(题面来自洛谷)
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
数据范围:N <= 1e5
分析:简化版的ETT。建立括号序列,操作1、3都很容易解决。为了实现操作2,给序列上的点打标记,表示这里存储的是原节点权值的正/负值。用线段树维护区间和,上推时分别合并正负节点数,区间修改时每个线段树节点值\(sum+=val*(pos-neg)\),这样就实现了正负节点的区分操作。同时要求移植子树就变成了ETT的模板题,用Splay/FHQ维护即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
const int maxn(100010);
typedef long long LL;
using namespace std;
int n, m;
LL wt[maxn];
int head[maxn], etop;
struct E {
int to, nxt;
} edge[maxn<<1];
inline void insert(int u, int v) {
edge[++etop] = (E) {v, head[u]};
head[u] = etop;
}
int fst[maxn], sec[maxn], tmr;
LL dat[maxn<<1];
bool cat[maxn<<1];
void dfs(int u, int pre) {
fst[u] = ++tmr;
dat[tmr] = wt[u];
cat[tmr] = 1;
for (int i = head[u], v; i; i = edge[i].nxt) {
if ((v = edge[i].to) == pre) continue;
dfs(v, u);
}
sec[u] = ++tmr;
dat[tmr] = -wt[u];
cat[tmr] = 0;
return;
}
namespace Seg_tree {
#define lc (nd<<1)
#define rc ((nd<<1)|1)
#define mid ((l + r) >> 1)
struct node {
LL sum;
int pos, neg;
friend node operator + (node a, node b) {
return (node) {a.sum + b.sum, a.pos + b.pos, a.neg + b.neg};
}
friend node operator * (node a, LL b) {
return (node) {a.sum + b * (a.pos-a.neg), a.pos, a.neg};
}
} seg[maxn<<3];
LL tag[maxn<<3];
inline void update(int nd) {
seg[nd] = seg[lc] + seg[rc];
}
inline void put_tag(int nd, LL val) {
seg[nd] = seg[nd] * val;
tag[nd] += val;
}
inline void push_down(int nd) {
put_tag(lc, tag[nd]);
put_tag(rc, tag[nd]);
tag[nd] = 0;
}
void build(int nd, int l, int r) {
if (l == r) {
seg[nd] = (node) {dat[l], cat[l], !cat[l]};
return;
}
build(lc, l, mid);
build(rc, mid+1, r);
update(nd);
}
void add(int nd, int l, int r, int ql, int qr, LL val) {
if (l >= ql && r <= qr) {
put_tag(nd, val);
return;
}
if (r < ql || l > qr) return;
push_down(nd);
add(lc, l, mid, ql, qr, val);
add(rc, mid+1, r, ql, qr, val);
update(nd);
}
LL query(int nd, int l, int r, int ql, int qr) {
if (l >= ql && r <= qr) {
return seg[nd].sum;
}
if (r < ql || l > qr) return 0;
push_down(nd);
return query(lc, l, mid, ql, qr) + query(rc, mid+1, r, ql, qr);
}
} using namespace Seg_tree;
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; ++i) scanf("%lld", &wt[i]);
int u, v;
for (int i = 1; i < n; ++i) {
scanf("%d %d", &u, &v);
insert(u, v), insert(v, u);
}
dfs(1, 0);
build(1, 1, 2*n);
int opt;
while (m--) {
scanf("%d %d", &opt, &u);
if (opt == 3) {
printf("%lld\n", query(1, 1, 2*n, 1, fst[u]));
continue;
}
scanf("%d", &v);
if (opt == 1) {
add(1, 1, 2*n, fst[u], fst[u], v);
add(1, 1, 2*n, sec[u], sec[u], v);
} else add(1, 1, 2*n, fst[u], sec[u], v);
}
return 0;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章