目录
@article{ma2018characterizing,
title={Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality},
author={Ma, Xingjun and Li, Bo and Wang, Yisen and Erfani, Sarah M and Wijewickrema, Sudanthi and Houle, Michael E and Schoenebeck, Grant and Song, Dawn and Bailey, James},
journal={arXiv: Learning},
year={2018}}
本文介绍了一种local intrinsic dimensionality(LID)的指标用以揭示普通样本和对抗样本的本质区别, 这个指标可以用用来进行防御(即在样本进来的时候, 提前预判其是否是对抗样本).
已有的一些用来区分普通样本和对抗样本的方法, 诸如KD(核密度估计) 和 BU(贝叶斯不确定度, 这个不是很了解), 但是其效果不明显, 本文提出的LID指标能够在各方面胜过他们.
比如在下图中, KM(k均值距离: 取样本\(x\)到最近的k个样本的距离的平均), 以及核密度估计(KD), 在普通样本和对抗样本上的指标是一致的, 此时无法判断, 而本文的LID的方法却能够判断(LID越大越偏离普通样本).
由一个点为中心, 向外以超距体的方式发散, 其体积\(V\)与边长\(r\)的关系可知
\[\frac{V_2}{V_1} = (\frac{r_2}{r_1})^m \rightarrow m= \frac{\log (V_2/V_1)}{ \log (r_2 / r_1)},
\]
其中\(m\)为维度.
于是有人就想出把这种思想推广到一般的数据(数据的分布可能是一个低维的流形)
定义(LID): 给定样本\(x \in \mathcal{X}\), 令\(R >0\)表示\(x\)到其它样本的距离的随机变量, 并用\(F(r)\)表示概率\(P(R\le r)\), 且假设其关于\(r>0\)连续可微, 则在\(x\)点的距离为\(r\)的LID定义为
\[\tag{2}
\mathrm{LID}_F(r) := \lim_{\epsilon \rightarrow 0} \frac{\log (F((1+\epsilon)\cdot r) / F(r))}{\log (1+\epsilon)}=\frac{r\cdot F'(r)}{F(r)},
\]
若极限存在.
注: 最后一个等式成立, 只需中间式子上下同除以\(\epsilon\)再分别取极限即可(既然二者的极限都存在).
最后,
\[\tag{3}
\mathrm{LID}_F := \lim_{r \rightarrow 0} \mathrm{LID}_F(r).
\]
此即位我们最后要的LID(\(r \rightarrow 0\)是因为我们关注的是局部信息).
\[\tag{4}
\widehat{\mathrm{LID}}(x)= - (\frac{1}{k} \sum_{i=1}^k \log \frac{r_i(x)}{r_k(x)})^{-1}.
\]
作者为了利用LID区分对抗样本, 训练了一个分类器. 在预先训练好的网络\(H\)上, 对每一个样本, 第i层的输出为\(H^i(x)\), 对每一层的输出, 我们都计算其LID(这一步会用到别的训练数据)并保存下来. 利用这些提取出来的特征(LID), 训练二分类器(作者采用逻辑斯蒂回归).
作者首先分析了, 普通样本(normal), 噪声样本(noisy), 对抗样本(adv)的LID指标, 可以发现,LID对对抗样本很敏感, 下面右图分析了在不同层中提取出来的LID值用于区分对抗样本的成功率.
比较了不同方法 KD, BU, KD+BU, LID在不同数据下, 对利用不同攻击方法生成的对抗样本进行区分的效果(途中的指标为AUC, AUC指标越大越好)
作者在FGM上计算LID并训练分类器, 再用别的方法生成对抗样本, 再测试效果.
作者为了探究每一个batch的大小, 以及超参数\(k\)的影响, 做了实验, 显然batch size大一点比较好.
作者最小化下式生成对抗样本,
结果这些样本不能够欺骗过LID.
注: 已经别的文章指出, 其成功的原因在于破坏了梯度, 更改一下损失函数就能攻破.
手机扫一扫
移动阅读更方便
你可能感兴趣的文章