ElasticSearch是一个开源的分布式搜索引擎,具备高可靠性,支持非常多的企业级搜索用例。像Solr4一样,是基于Lucene构建的。支持时间时间索引和全文检索。官网:http://www.elasticsearch.org
它对外提供一系列基于java和http的api,用于索引、检索、修改大多数配置。
写这篇博客的的主要原因是ElasticSearch的网站只有一些简单的介绍,质量不高,缺少完整的教程。我费了好大劲才把它启动起来,做了一些比hello world更复杂一些的工作。我希望通过分享我的一些经验来帮助对ElasticSearch(很强大的哦)感兴趣的人在初次使用它的时候能够节省些时间。学完这篇教程,你就掌握了它的基本操作——启动、运行。我将从我的电脑上分享这个链接。
作者:胡一
链接:https://zhuanlan.zhihu.com/p/33375126
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
分布式系统类型多,涉及面非常广,不同类型的系统有不同的特点,批量计算和实时计算就差别非常大。这篇文章中,重点会讨论下分布式数据系统的设计,比如分布式存储系统,分布式搜索系统,分布式分析系统等。
我们先来简单看下Elasticsearch的架构。
Elasticsearch是一个非常著名的开源搜索和分析系统,目前被广泛应用于互联网多种领域中,尤其是以下三个领域特别突出。一是搜索领域,相对于solr,真正的后起之秀,成为很多搜索系统的不二之选。二是Json文档数据库,相对于MongoDB,读写性能更佳,而且支持更丰富的地理位置查询以及数字、文本的混合查询等。三是时序数据分析处理,目前是日志处理、监控数据的存储、分析和可视化方面做得非常好,可以说是该领域的引领者了。
Elasticsearch的详细介绍可以到官网查看。我们先来看一下Elasticsearch中几个关键概念:
用图形表示出来可能是这样子的:
Index流程
建索引(Index)的时候,一个Doc先是经过路由规则定位到主Shard,发送这个doc到主Shard上建索引,成功后再发送这个Doc到这个Shard的副本上建索引,等副本上建索引成功后才返回成功。
在这种架构中,索引数据全部位于Shard中,主Shard和副本Shard各存储一份。当某个副本Shard或者主Shard丢失(比如机器宕机,网络中断等)时,需要将丢失的Shard在其他Node中恢复回来,这时候就需要从其他副本(Replica)全量拷贝这个Shard的所有数据到新Node上构造新Shard。这个拷贝过程需要一段时间,这段时间内只能由剩余主副本来承载流量,在恢复完成之前,整个系统会处于一个比较危险的状态,直到failover结束。
这里就体现了副本(Replica)存在的一个理由,避免数据丢失,提高数据可靠性。副本(Replica)存在的另一个理由是读请求量很大的时候,一个Node无法承载所有流量,这个时候就需要一个副本来分流查询压力,目的就是扩展查询能力。
角色部署方式
接下来再看看角色分工的两种不同方式:
Elasticsearch支持上述两种方式:
上面介绍了Elasticsearch的部署层架构,不同的部署方式适合不同场景,需要根据自己的需求选择适合的方式。
接下来我们看看当前Elasticsearch的数据层架构。
数据存储
Elasticsearch的Index和meta,目前支持存储在本地文件系统中,同时支持niofs,mmap,simplefs,smb等不同加载方式,性能最好的是直接将索引LOCK进内存的MMap方式。默认,Elasticsearch会自动选择加载方式,另外可以自己在配置文件中配置。这里有几个细节,具体可以看官方文档。
索引和meta数据都存在本地,会带来一个问题:当某一台机器宕机或者磁盘损坏的时候,数据就丢失了。为了解决这个问题,可以使用Replica(副本)功能。
副本(Replica)
可以为每一个Index设置一个配置项:副本(Replicda)数,如果设置副本数为2,那么就会有3个Shard,其中一个是PrimaryShard,其余两个是ReplicaShard,这三个Shard会被Mater尽量调度到不同机器,甚至机架上,这三个Shard中的数据一样,提供同样的服务能力。
副本(Replica)的目的有三个:
问题
上面说了一些优势,这种架构同样在一些场景下会有些问题。
Elasticsearch采用的是基于本地文件系统,使用Replica保证数据可靠性的技术架构,这种架构一定程度上可以满足大部分需求和场景,但是也存在一些遗憾:
上面介绍了Elasticsearch数据层的架构,以及副本策略带来的优势和不足,下面简单介绍了几种不同形式的分布式数据系统架构。
第一种:基于本地文件系统的分布式系统
上图中是一个基于本地磁盘存储数据的分布式系统。Index一共有3个Shard,每个Shard除了Primary Shard外,还有一个Replica Shard。当Node 3机器宕机或磁盘损坏的时候,首先确认P3已经不可用,重新选举R3位Primary Shard,此Shard发生主备切换。然后重新找一台机器Node 7,在Node7 上重新启动P3的新Replica。由于数据都会存在本地磁盘,此时需要将Shard 3的数据从Node 6上拷贝到Node7上。如果有200G数据,千兆网络,拷贝完需要1600秒。如果没有replica,则这1600秒内这些Shard就不能服务。
为了保证可靠性,就需要冗余Shard,会导致更多的物理资源消耗。
这种思想的另外一种表现形式是使用双集群,集群级别做备份。
在这种架构中,如果你的数据是在其他存储系统中生成的,比如HDFS/HBase,那么你还需要一个数据传输系统,将准备好的数据分发到相应的机器上。
这种架构中为了保证可用性和可靠性,需要双集群或者Replica才能用于生产环境,优势和副作用在上面介绍Elasticsearch的时候已经介绍过了,这里就就不赘述了。
Elasticsearch使用的就是这种架构方式。
第二种:基于分布式文件系统的分布式系统(共享存储)
针对第一种架构中的问题,另一种思路是:存储和计算分离。
第一种思路的问题根源是数据量大,拷贝数据耗时多,那么有没有办法可以不拷贝数据?为了实现这个目的,一种思路是底层存储层使用共享存储,每个Shard只需要连接到一个分布式文件系统中的一个目录/文件即可,Shard中不含有数据,只含有计算部分。相当于每个Node中只负责计算部分,存储部分放在底层的另一个分布式文件系统中,比如HDFS。
上图中,Node 1 连接到第一个文件;Node 2连接到第二个文件;Node3连接到第三个文件。当Node 3机器宕机后,只需要在Node 4机器上新建一个空的Shard,然后构造一个新连接,连接到底层分布式文件系统的第三个文件即可,创建连接的速度是很快的,总耗时会非常短。
这种是一种典型的存储和计算分离的架构,优势有以下几个方面:
这种架构同时也有一个不足:
HBase使用的就是这种架构方式。
Solr也支持这种形式的架构。
总结
上述两种架构,各有优势和不足,对于某些架构中的不足或缺陷,思路不同,解决的方案也大相径庭,但是思路跨度越大,收益一般也越大。
上面只是介绍了分布式数据(存储/搜索/分析等等)系统在存储层的两种不同架构方式,希望能对大家有用。但是分布式系统架构设计所涉及的内容广,细节多,权衡点众,如果大家对某些领域或者方面有兴趣,也可以留言,后面再探讨。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章