mapreduce 函数入门 二
阅读原文时间:2023年07月11日阅读:1

m

apreduce三大组件:Combiner\Sort\Partitioner

默认组件:排序,分区(不设置,系统有默认值)

一、mapreduce中的Combiner

1、什么是combiner

Combiner 是 MapReduce 程序中 Mapper 和 Reducer 之外的一种组件,它的作用是在 maptask 之后给 maptask 的结果进行局部汇总,以减轻 reducetask 的计算负载,减少网络传输
    2、如何使用combiner

Combiner 和 Reducer 一样,编写一个类,然后继承 Reducer, reduce 方法中写具体的 Combiner 逻辑,然后在 job 中设置 Combiner 类: job.setCombinerClass(FlowSumCombine.class)

(如果combiner和reduce逻辑一样,就不用写combiner类了,直接在job设置信息)

3、使用combiner注意事项

(1) Combiner 和 Reducer 的区别在于运行的位置:

Combiner 是在每一个 maptask 所在的节点运行
      Reducer 是接收全局所有 Mapper 的输出结果
(2) Combiner 的输出 kv 应该跟 reducer 的输入 kv 类型要对应起来
(3) Combiner 的使用要非常谨慎,因为 Combiner 在 MapReduce 过程中可能调用也可能不调 用,可能调一次也可能调多次,所以: Combiner 使用的原则是:有或没有都不能影响业务 逻辑,都不能影响最终结果(求平均值时,combiner和reduce逻辑不一样)
二、mapreduce中的序列化

1、概述

Java 的序列化是一个重量级序列化框架( Serializable),一个对象被序列化后,会附带很多额 外的信息(各种校验信息, header,继承体系等),不便于在网络中高效传输;所以, hadoop 自己开发了一套序列化机制( Writable),精简,高效
Hadoop 中的序列化框架已经对基本类型和 null 提供了序列化的实现了。分别是:

2、Java序列化

以案例说明为例:

3、自定义对象实现mapreduce框架的序列化

如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 mapreduce框中的 shuffle 过程一定会对 key 进行排序,此时,自定义的 bean 实现的接口应该是:
public class FlowBean implements WritableComparable
以案例为例说明
下面是进行了序列化的 FlowBean 类:

案例:

代码:

1、

package com.ghgj.mr.exerciseflow;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.WritableComparable;

public class Flow implements WritableComparable{

private String phone;  
private long upflow;    // 上行流量  
private long downflow;  // 下行流量  
private long sumflow;   // 上行和下行流量之和  
public long getUpflow() {  
    return upflow;  
}  
public void setUpflow(long upflow) {  
    this.upflow = upflow;  
}  
public long getDownflow() {  
    return downflow;  
}  
public void setDownflow(long downflow) {  
    this.downflow = downflow;  
}  
public long getSumflow() {  
    return sumflow;  
}  
public void setSumflow(long sumflow) {  
    this.sumflow = sumflow;  
}  
public String getPhone() {  
    return phone;  
}  
public void setPhone(String phone) {  
    this.phone = phone;  
}  
public Flow() {  
}  
public Flow(long upflow, long downflow, String phone) {  
    super();  
    this.upflow = upflow;  
    this.downflow = downflow;  
    this.sumflow = upflow + downflow;  
    this.phone = phone;  
}  
@Override  
public String toString() {  
    return phone +"\\t" + upflow +"\\t" + downflow +"\\t" + sumflow;  
}  
@Override  
public void write(DataOutput out) throws IOException {  
    // TODO Auto-generated method stub  
    out.writeLong(upflow);  
    out.writeLong(downflow);  
    out.writeLong(sumflow);  
    out.writeUTF(phone);  
}  
@Override  
public void readFields(DataInput in) throws IOException {  
    // TODO Auto-generated method stub  
    this.upflow = in.readLong();  
    this.downflow = in.readLong();  
    this.sumflow = in.readLong();  
    this.phone = in.readUTF();  
}  
@Override  
public int compareTo(Flow flow) {  
    if((flow.getSumflow() - this.sumflow) == 0){  
        return this.phone.compareTo(flow.getPhone());  
    }else{  
        return (int)(flow.getSumflow() - this.sumflow);  
    }  
}  

}

2、

package com.ghgj.mr.exerciseflow;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
* 手机号 上行流量 下行流量 总流量
* @author Administrator
*
*/
public class FlowExercise1 {

public static void main(String\[\] args) throws Exception {

    Configuration conf = new Configuration();  
    Job job = Job.getInstance(conf);

    job.setJarByClass(FlowExercise1.class);

    job.setMapperClass(FlowExercise1Mapper.class);  
    job.setReducerClass(FlowExercise1Reducer.class);

    job.setMapOutputKeyClass(Text.class);  
    job.setMapOutputValueClass(Flow.class);

    job.setOutputKeyClass(Text.class);  
    job.setOutputValueClass(Text.class);

    FileInputFormat.setInputPaths(job, "d:/flow/input");  
    FileOutputFormat.setOutputPath(job, new Path("d:/flow/output13"));

    boolean status = job.waitForCompletion(true);  
    System.exit(status? 0 : 1);  
}

static class FlowExercise1Mapper extends Mapper<LongWritable, Text, Text, Flow>{  
    @Override  
    protected void map(LongWritable key, Text value,Context context)  
            throws IOException, InterruptedException {  
        String\[\] splits = value.toString().split("\\t");

        String phone = splits\[1\];  
        long upflow = Long.parseLong(splits\[8\]);  
        long downflow = Long.parseLong(splits\[9\]);

        Flow flow = new Flow(upflow, downflow);  
        context.write(new Text(phone), flow);  
    }  
}

static class FlowExercise1Reducer extends Reducer<Text, Flow, Text, Flow>{  
    @Override  
    protected void reduce(Text phone, Iterable<Flow> flows, Context context)  
            throws IOException, InterruptedException {

        long sumUpflow = 0;    // 该phone用户的总上行流量  
        long sumDownflow = 0;  
        for(Flow f : flows){  
            sumUpflow += f.getUpflow();  
            sumDownflow += f.getDownflow();  
        }  
        Flow sumFlow = new Flow(sumUpflow, sumDownflow);  
        context.write(phone, sumFlow);

// String v = sumUpflow +"\t" + sumDownflow +"\t" + (sumUpflow + sumDownflow);
// context.write(phone, new Text(v));
}
}
}

3、

package com.ghgj.mr.exerciseflow;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowExercise2Sort {

public static void main(String\[\] args) throws Exception {

    Configuration conf = new Configuration();  
    Job job = Job.getInstance(conf);

    job.setJarByClass(FlowExercise2Sort.class);

    job.setMapperClass(FlowExercise2SortMapper.class);  
    job.setReducerClass(FlowExercise2SortReducer.class);

    job.setMapOutputKeyClass(Flow.class);  
    job.setMapOutputValueClass(Text.class);

// job.setCombinerClass(FlowExercise1Combiner.class);
// job.setCombinerClass(FlowExercise1Reducer.class);

    job.setOutputKeyClass(NullWritable.class);  
    job.setOutputValueClass(Flow.class);

    FileInputFormat.setInputPaths(job, "d:/flow/output1");  
    FileOutputFormat.setOutputPath(job, new Path("d:/flow/sortoutput6"));

    boolean status = job.waitForCompletion(true);  
    System.exit(status? 0 : 1);  
}

static class FlowExercise2SortMapper extends Mapper<LongWritable, Text, Flow, Text>{  
    @Override  
    protected void map(LongWritable key, Text value,  
            Mapper<LongWritable, Text, Flow, Text>.Context context)  
            throws IOException, InterruptedException {

        String\[\] splits = value.toString().split("\\t");

        String phone = splits\[0\];  
        long upflow = Long.parseLong(splits\[1\]);  
        long downflow = Long.parseLong(splits\[2\]);  

// long sumflow = Long.parseLong(splits[3]);
Flow flow = new Flow(upflow, downflow, phone);

        context.write(flow, new Text(phone));  
    }  
}

static class FlowExercise2SortReducer extends Reducer<Flow, Text, NullWritable, Flow>{  
    @Override  
    protected void reduce(Flow flow, Iterable<Text> phones, Context context)  
            throws IOException, InterruptedException {

        for(Text t : phones){  
            context.write(NullWritable.get(), flow);  
        }  
    }  
}  

}

 三、mapreduce中的sort

  需求: 把上例求得的流量综合从大到小倒序排
  基本思路:实现自定义的 bean 来封装流量信息,并将 bean 作为 map 输出的 key 来传输 MR 程序在处理数据的过程中会对数据排序(map 输出的 kv 对传输到 reduce 之前,会排序), 排序的依据是 map 输出的 key,

         所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到 key 中,让 key 实现接口: WritableComparable, 然后重写 key 的 compareTo 方法(上面第二题)

四、mapreduce中的partitioner

  需求: 根据归属地输出流量统计数据结果到不同文件,以便于在查询统计结果时可以定位到 省级范围进行
  思路:MapReduce 中会将 map 输出的 kv 对,按照相同 key 分组,然后分发给不同的 reducetask
  默认的分发规则为:根据 key 的 hashcode%reducetask 数来分发, 所以:如果要按照我们自 己的需求进行分组,则需要改写数据分发(分组)组件 Partitioner
  自定义一个 CustomPartitioner 继承抽象类: Partitioner
  然后在 job 对象中,设置自定义 partitioner: job.setPartitionerClass(ProvincePartitioner.class)(上面第三题)

参考:https://www.cnblogs.com/liuwei6/p/6709931.html