小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?
输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。
输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。
4 3
1 1
1 2
1 3
1 5
0 0 1 1
对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。
以上所有数均为正整数。
对于每一堆的数量,直接记忆化计算他的SG值
枚举分的块数i,考虑很多n/i都是相同的于是可以数论分块
但是剩下的n%i个石头数不一定相同
可以发现对于子状态异或和的计算,实际上是看数量为n/i+1的堆和n/i的堆的奇偶性
如果是偶数,那么异或和显然为0
所以我们发现i和i+2实际上算出来的子状态相同
于是数论分块时只枚举块头和块头+1就行了
复杂度O(n√n)
#include
#include
#include
#include
#include
using namespace std;
int SG[],F,n,ans,vis[];
int query(int x)
{int i,j,pos,size,re,tmp;
if (SG[x]!=-) return SG[x];
for (i=;i<=x;i=pos+)
{
pos=x/(x/i);
for (j=i;j<=i+&&j<=x;j++)
{
size=x/j;
re=x%j;
tmp=;
if (re&) tmp^=query(x/j+);
if ((j-re)&) tmp^=query(x/j);
vis[tmp]=x;
}
}
for (i=;;i++)
if (vis[i]!=x)
{
SG[x]=i;
break;
}
return SG[x];
}
int main()
{int T,i,x;
cin>>T>>F;
for (i=F;i<=;i++)
SG[i]=-;
for (i=;i
ans=;
for (i=;i<=n;i++)
{
scanf("%d",&x);
ans^=query(x);
}
if (T==)
{
if (ans) printf("1\n");
else printf("0\n");
}
else
{
if (ans) printf("1 ");
else printf("0 ");
}
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章