默认环境:anaconda的python3.7版本,win10环境
第一步:安装dlib
从网络上下载:
下载完成后解压
编译:打开终端,是使用anaconda的python环境定位到dlib文件夹,使用 pyhton setup.py install
安装文件。
在安装过程遇到的问题:
从新使用 pyhton setup.py install
安装文件。
第二步:安装face_recognition
使用 pip install face_recognition
安装即可。
导入face_recognition
import face_recognition
加载图像
图像加载到一个 numpy 数组中
image = face_recognition.load_image_file("your_file.jpg")
batch_face_locations
使用 cnn 人脸检测器返回图像中人脸边界框的二维数组 ,使用GPU批量处理图像
face_recognition.api.batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128)
参数:
返回:
以 css(上、右、下、左)顺序找到的人脸位置的元组列表
compare_faces
面部编码列表与候选编码进行比较,看看它们是否匹配。
face_recognition.api.compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6)
参数:
返回:
True/False 值列表
face_distance
给定一个人脸编码列表,将它们与已知的人脸编码进行比较,并获得每个比较人脸的欧几里德距离。距离告诉您面孔的相似程度。
face_recognition.api.face_distance( face_encodings , face_to_compare )
参数:
face_encodings: 要比较的人脸编码列表
face_to_compare: 要比较的人脸编码
返回:
一个 numpy ndarray,每个面的距离与 'faces' 数组的顺序相同
face_encodings
给定一个图像,返回图像中每个人脸的 128 维人脸编码。
face_recognition.api.face_encodings( face_image , known_face_locations=None , num_jitters=1 , model='small' )
参数:
face_image: 包含一张或多张人脸的图像
known_face_locations: 可选 - 已经知道每个人脸的边界框。
num_jitters: 计算编码时对人脸重新采样的次数。更高更准确,但更慢(即 100 慢 100 倍)
model: 可选 - 要使用的模型。“ large ”或“ small ”(默认)仅返回 5 个点,但速度更快。
返回:
128 维人脸编码列表(图像中的每个人脸编码一个)
face_landmarks
给定一个图像,返回图像中每个人脸特征位置(眼睛、鼻子等)的字典
face_recognition.api.face_landmarks( face_image , face_locations=None , model='large' )
参数:
face_image: 要搜索的图像
face_locations: 可选择提供要检查的人脸位置列表。
model: 可选 - 要使用的模型。“large ”(默认)或“small”仅返回 5 个点但速度更快。
返回:
面部特征位置(眼睛、鼻子等)的字典列表
face_locations
返回图像中人脸的边界框数组
face_recognition.api.face_locations( img , number_of_times_to_upsample=1 , model='hog' )
参数:
img: 图像(作为 numpy 数组)
number_of_times_to_upsample:在图像上寻找人脸的次数。较高的数字会发现较小的面孔。
model: 要使用的人脸检测模型。“hog”在 CPU 上不太准确但速度更快。“cnn”是一种更准确的深度学习模型,它经过 GPU/CUDA 加速(如果可用)。 默认为“hog”
返回:
以 css(上、右、下、左)顺序找到的人脸位置的元组列表
load_image_file
将图像文件(.jpg、.png 等)加载到 numpy 数组中
face_recognition.api.load_image_file(file,model='RGB')
参数:
file: 要加载的图像文件名或文件对象
model: 将图像转换为的格式。仅支持“RGB”(8 位 RGB,3 通道)和“L”(黑白)。
返回:
图像内容作为 numpy 数组
手机扫一扫
移动阅读更方便
你可能感兴趣的文章