ML-朴素贝叶斯算法
阅读原文时间:2023年07月09日阅读:1

贝叶斯定理

w是由待测数据的所有属性组成的向量。p(c|x)表示,在数据为x时,属于c类的概率。

\[p(c|w)=\frac{p(w|c)p(c)}{p(w)}
\]

如果数据的目标变量最后有两个结果,则需要分别计算p(c1|x)p(c2|x)取最大的值为分类的结果

\[p(c_{1}|w)=\frac{p(w|c_{1})p(c_{1})}{p(w)}、
p(c_{2}|w)=\frac{p(w|c_{2})p(c_{2})}{p(w)}
\]

算法的目的就在于找到使p最大的 \(c_{i}\)。由于只需要比较两个概率的大小,则分母p(w)可以不用算,并不影响结果。那 \(p(w|c_{0})p(c_{0})\)又如何计算呢?一条数据w其实包含很多属性w=w1,w2,w3,...,wn.以 \(p(w|c_{0})p(c_{0})\)为例:

p(c0) 表示分类结果为c0的概率:

\[p(c_{0})=\frac{数据集中属于c_{0}类别的数据条数}{数据集的总数}
\]

而 \(p(w|c_{0})\) == \(p(w_{1},w_{2},w_{3},…,w_{n}|c_{0})\)。朴素贝叶斯分类假设所有属性之间是独立的,互不影响。那么就满足如下关系:

\[p(w_{1},w_{2},w_{3},…,w_{n}|c_{0}) = p(w_{1}|c{0})p(w_{2}|c{0})p(w_{3}|c{0})…p(w_{n}|c{0})
\]

\[p(w_{1}|c{0})=\frac{在c_{0}类别的数据中单词w_{1}出现的次数}{属于c_{0}类别的单词总数}
\]

至此,已经计算出了足够数据来计算出\(p(w|c_{1})p(c_{1})\),用这些概率可以给新的数据分类。如果此时有数据 w=w1,w3,w5,那需要分别算出两个概率:

\[p(c_{0}|w_{1},w_{3},w_{5})=>p(w_{1}|c{0})p(w_{3}|c{0})p(w_{5}|c{0})p(c_{0})
\]

\[p(c_{1}|w_{1},w_{3},w_{5})=>p(w_{1}|c{1})p(w_{3}|c{0})p(w_{5}|c{1})p(c_{1})
\]

比较大小,找到最大的概率,最大概率的 \(c_{i}\)就是分类的结果

算法实现

1、从文本文件中读取数据,并分割成每个单词,放到一个list中。每个文件一个list,最后是一个二维的list:

[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],

['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid']]

def loadDataSet():
    """
    创建数据集
    :return: 文档列表 docList, 所属类别classVec
    """
    docList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                   ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                   ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                   ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                   ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                   ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0, 1, 0, 1, 0, 1]  # 1 is abusive, 0 not
    return docList, classVec

2、遍历上例的二维表,找到所有出现的单词,使用set()去重。这个集合就作为数据集的属性.上例的词汇表为:

['steak', 'dog', 'problems', 'so', 'buying', 'my', 'how', 'licks', 'dalmation', 'take', 'food', 'maybe', 'stop', 'posting', 'him', 'garbage', 'has', 'stupid', 'park', 'ate', 'mr', 'not', 'love', 'help', 'worthless', 'flea', 'please', 'quit', 'to', 'is', 'I', 'cute']

def createVocabList(docList):
    """构造词汇表,统计所有文本中的所有单词
    :return list 去重的词汇表
    """
    vocalSet = set([])
    for line in docList:
        vocalSet = vocalSet | set(line)     # 集合求并集操作
    return list(vocalSet)

3、将每个文件的单词列表转换为向量。遍历文件中的每个单词,如果出现在词汇表中则为1,否则为0

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1]

def setOfWords2Vec(vocabList, inputSet):
    """将输入数据转换为向量.存在这个单词记为1,不存在则记为0"""
    returnVec = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
    return returnVec

训练算法就是计算一系列概率的过程。要预测一个文本,需要计算以下概率:

  • \(p(c_{0})\) 和 \(p(c_{1})\)
  • \(p(w_{i}|c_{0})\) 和 \(p(w_{i}|c_{1})\)

下面的代码计算出了这些概率,其中p0是一个列表,其中记录了每一个 \(p(w_{i}|c_{0})\)的值。p1同理。pc1表示 \(p(c_{1})\),\(p(c_{0})\)可以用 1-pc1 得到

p0: [[0.04166667 0.04166667 0.04166667 0.04166667 …]]

p1: [[0. 0.10526316 0. 0. …]]

pc: 0.5

def trainNB0(trainMatrix, trainCategory):
    """分类器训练函数"""
    numberOfAttr = len(trainMatrix[0])
    numbrOfDoc = len(trainMatrix)
    p0 = np.zeros((1, numberOfAttr))                # p(wi|c0)
    p1 = np.zeros((1, numberOfAttr))                # p(wi|c1)
    p0Total = 0.0
    p1Total = 0.0
    pc1 = float(sum(trainCategory)) / numbrOfDoc          # p(c1)

    for i in range(numbrOfDoc):
        if trainCategory[i] == 0:
            p0 += trainMatrix[i]                            # 统计先验概率c0下,每个单词出现的次数
            p0Total += sum(trainMatrix[i])
        else:
            p1 += trainMatrix[i]                            # 统计先验概率c1下,每个单词出现的次数
            p1Total += sum(trainMatrix[i])

    p0 = p0 / p0Total           # 用c0下每个单词出现的次数,分别除以c0下的总数==> p(wi|c0)
    p1 = p1 / p1Total           # p(wi|c1)

    return p0, p1, pc1

根据之前的理论。如果数据有三个单词 w=w1,w3,w5,那需要分别算出两个概率:

\[p(c_{0}|w_{1},w_{3},w_{5})=>p(w_{1}|c{0})p(w_{3}|c{0})p(w_{5}|c{0})p(c_{0})
\]

\[p(c_{1}|w_{1},w_{3},w_{5})=>p(w_{1}|c{1})p(w_{3}|c{0})p(w_{5}|c{1})p(c_{1})
\]

优化代码

1、书上说,对于 \(p(w_{1}|c{0})p(w_{2}|c{0})p(w_{3}|c{0})\)如果其中任何一个概率为0,则总概率为零,所以把所有单词出现的次数初始化为1。(其实不改也行,但是代码中inputData * p0已经过滤出了所有非零元素)

2、 概率都是很小的数,如果直接以小数运算会带来很大的误差。书上采用了对数替代直接的小数运算。本来的概率是这样算的

\[p(w_{1}|c{0})p(w_{3}|c{0})p(w_{5}|c{0})p(c_{0}) == \frac{count(w_{1}|c_{0})}{count(c{0})}\frac{count(w_{3}|c_{0})}{count(c{0})}\frac{count(w_{5}|c_{0})}{count(c{0})}p(c_{0})
\]

现在使用对数,In(fx)并不会影响f(x)的单调性,所以计算的结果可以直接比较大小,不会影响分类结果。计算方式如下:

\[In(p(w_{1}|c{0})p(w_{3}|c{0})p(w_{5}|c{0})p(c_{0})) == In(\frac{count(w_{1}|c_{0})}{count(c{0})})+In(\frac{count(w_{3}|c_{0})}{count(c{0})})+In(\frac{count(w_{5}|c_{0})}{count(c{0})}) + In(p(c_{0}))
\]

优化后的训练代码如下:

def trainNB1(trainMatrix, trainCategory):
    """分类器训练函数"""
    numberOfAttr = len(trainMatrix[0])
    numbrOfDoc = len(trainMatrix)
    p0 = np.ones((1, numberOfAttr))                # p(wi|c0)
    p1 = np.ones((1, numberOfAttr))                # p(wi|c1)
    p0Total = 2.0                                   # 不唯一
    p1Total = 2.0
    pc1 = float(sum(trainCategory)) / numbrOfDoc          # p(c1)

    for i in range(numbrOfDoc):
        if trainCategory[i] == 0:
            p0 += trainMatrix[i]
            p0Total += sum(trainMatrix[i])
        else:
            p1 += trainMatrix[i]
            p1Total += sum(trainMatrix[i])

    p0 = np.log(p0 / p0Total)
    p1 = np.log(p1 / p1Total)

    return p0, p1, pc1

分类的代码如下:

def classifyNB(inputData, p0, p1, pc1):
    """使用计算得到的概率分类"""
    prob0 = np.sum(inputData * p0) + np.log(1-pc1)
    prob1 = np.sum(inputData * p1) + np.log(pc1)
    if prob0 > prob1:
        return 0
    else:
        return 1

测试代码:

def testNB():
    """测试函数"""
    docList, classVec = loadDataSet()
    vocabList = createVocabList(docList)

    trainMat = []                       # 由0/1组成的数据集 : [[0,1,0,0,1,....],[0,0,0,0,0,1,...]]
    for doc in docList:
        trainMat.append(setOfWords2Vec(vocabList, doc))
    p0, p1, pc1 = trainNB0(trainMat, classVec)

    testData = ['love', 'my', 'dalmation']
    thisDoc = setOfWords2Vec(vocabList, testData)
    print("分类结果是:", classifyNB(thisDoc, p0, p1, pc1))

    testData = ['stupid', 'garbage']
    thisDoc = setOfWords2Vec(vocabList, testData)
    print("分类结果是:", classifyNB(thisDoc, p0, p1, pc1))

上面的代码中,文件中出现的单词,记为1,否则为0。这种方式叫词集模型(set-of-words model)。得到的是如下的向量:

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1]

但是同一个单词在文档中可能多次出现,在向量中记录单词出现的次数的方式叫做词袋模型(bag-of-words model)。得到的向量可能是这样的:

[0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 7, 0, 0, 2]

要实现词袋模型只需要改动很少量的代码:

def bagOfWords2Vec(vocabList, inputSet):
    """[词袋模型]将输入数据转换为向量.存在这个单词记为1,不存在则记为0"""
    returnVec = [0] * len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
    return returnVec

案例:过滤垃圾邮件

def textParse(bigString):
    """将字符串返回成单词列表
    1. 以空白字符作为分隔符
    2. 排除长度小于2的单词,他可能没有实际意义
    3. 所有单词转换为小写
    """
    import re
    listOfWords = re.split(r'\W*', bigString)
    return [word.lower() for word in listOfWords if len(word) > 2]

def spamTest():
    """测试算法。使用交叉验证"""
    docList, classList, fullText = [], [], []
    # 1. 解析文本文件。一个文件解析成一个list,所有文件保存为一个二维list
    for i in range(1, 26):
        spam = open("dataset/email/spam/%d.txt" % i)
        wordList = textParse(spam.read())
        docList.append(wordList)
        classList.append(1)

        ham = open("dataset/email/ham/%d.txt" % i)
        wordList = textParse(ham.read())
        docList.append(wordList)
        classList.append(0)

    # 2.格式化
    vocabList = createVocabList(docList)     # 创建词汇表

    # 3. 随机挑选10个测试数据(可能没有10个)
    trainSet = list(range(50))            # 记录了所有用于训练的数据集的下标
    testSet = []                    # 记录了所有用于测试的数据集的下标
    for i in range(10):
        randIndex = int(random.uniform(0, len(trainSet)))
        testSet.append(trainSet[randIndex])
        del trainSet[randIndex]

    # 4. 训练
    trainMatrix, trainCategory = [], []
    for i in range(len(trainSet)):
        trainMatrix.append(bagOfWords2Vec(vocabList, docList[trainSet[i]]))
        trainCategory.append(classList[trainSet[i]])
    p0, p1, pc1 = trainNB1(trainMatrix, trainCategory)

    # 5. 测试
    testMatrix, testCategory, error = [], [], 0
    for i in range(len(testSet)):
        line = bagOfWords2Vec(vocabList, docList[testSet[i]])
        result = classifyNB(line, p0, p1, pc1)
        if result != classList[testSet[i]]:
            error += 1
    print("错误率为:", (float(error)/len(testSet)))

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器