最近打算研究研究 Flink,根据官方文档写个 Hello,World。入门还是比较容易的,不需要复杂的安装环境、配置。这篇文章简单介绍 Flink 的使用感受以及入门。
可以看出 Flink 致力于为开发者提供一种方便、易用的编程框架。同时,社区非常注重文档的详细程序以及开发者使用的便利性。
下面的内容是搭建 Flink 环境,并运行 WordCount。
Flink 可以运行在 Linux、Mac OS X 和 Windows 环境。我喜欢在 Windows 下开发,所以在 Windows 运行 Flink。Flink 的最新版本(1.8.0)需要 JDK 的版本为 1.8 以上。本地启动 Flink 非常容易,下载 Flink 二进制包,需要选择 Scala 的版本,如果不用 Scala 开发 Flink 应用程序选哪个版本无所谓。我下载的是 flink-1.8.0-bin-scala_2.11.tgz。启动步骤如下:
cd flink-1.8.0 #解压后的目录
cd bin
start-cluster.bat #启动本地 Flink
启动后会发现弹出了两个 Java 程序的窗口。一个是 JobManager,另一个是 TaskManater。通过 http://localhost:8081 访问 Flink 的 web 页面,该站点用于查看运行环境和资源、提交和监控 Flink 作业。
通过简单的 WordCount 感受一下 Flink 应用程序的编写过程。Flink 已经提供生成 Maven 工程的模板
# 使用 Java 的 maven 工程
mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.8.0
mvn archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-scala \
-DarchetypeVersion=1.8.0
如果不想通过命令行的方式生成 maven 工程,可以通过如下设置在 IDEA 中创建 Flink 应用的模板工程,以 Java 为例
在如上的页面点击 “Add Archetype…”,然后再弹出的对话框填写如下内容
选择我们添加的 archetype 便可继续创建 maven 工程。除了 maven 工程还可以创建 Gradle 和 Sbt 工程。
为了快速运行 Flink 应用,我们可以直接将官网 WordCount 例子的代码拷贝自己的项目。Java 代码如下
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
public class FirstCase {
public static void main(String[] args) throws Exception {
// the port to connect to
final int port = 9000;
// get the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data by connecting to the socket
DataStream<String> text = env.socketTextStream("192.168.29.132", port, "\\n");
// parse the data, group it, window it, and aggregate the counts
DataStream<WordWithCount> windowCounts = text
.flatMap(new FlatMapFunction<String, WordWithCount>() {
@Override
public void flatMap(String value, Collector<WordWithCount> out) {
for (String word : value.split("\\\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.reduce(new ReduceFunction<WordWithCount>() {
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
// Data type for words with count
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
虽然不太熟悉 Flink 编程模型,但从上面代码中基本上能推测出每一步的含义。由于我们入门 Flink ,刚开始没必要太纠结代码本身。先将 Demo 运行起来,在慢慢深入学习。现在统计程序已经有了,但是还缺少数据源。官网的例子使用的是 netcat ,我在 Windows 下安装了该工具,但是觉得用起来不方便。在 Linux 虚拟机上装了一个,这样用法跟官网一致的。我的虚拟机系统为 Centos 7 64位,安装命令如下
yum install nmap-ncat.x86_64
启动 netcat 用于发数据
nc -l 9000
接下来便是启动 Flink 应用程序连接数据源并进行统计。 启动之前需要将以下代码中 ip 和 端口换成自己的
DataStream
启动 Flink 应用程序有两种方式,一种是直接直接在 IDEA 中直接运行 Java 程序;另一种是通过 maven 打一个 jar 包,提交到 Flink 集群运行。第二种方式的命令如下
$FLINK_HOME\bin\flink run $APP_HOME\flink-ex-1.0-SNAPSHOT.jar
FLINK_HOME 为 flink 二进制包的目录
APP_HOME 为上面创建的 maven 工程的目录
启动 Flink 应用后,我们可以在 netcat 中输入文本,并观察 Flink 的统计结果
$ nc -l 9000
a a
我们只发送了一行,内容为“a a”。如果在 IDEA 中启动程序可以直接在 IDEA 控制台看到输出结果,如果通过 flink run 方式启动,需要在 TaskManager 的窗口中查看输出。输出内容如下
a : 2
a : 2
a : 2
a : 2
a : 2
为什么输出了 5 次。来看一下我们的应用程序中有这样一句
.timeWindow(Time.seconds(5), Time.seconds(1))
它代表 Flink 应用程序每次处理的数据窗口为 5s,处理完后,整个窗口向前滑动 1s 。也就是每次处理的数据为“最近 5s”的数据。因为最近 5s 数据源中只有“a a”这一条记录,因此输出 5 次。
以上便是 Java 版的 WordCount。当然我们也可以用 Scala 编写,且 Scala 的写法更简洁,代码量更少。
import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
object SocketWindowWordCount {
def main(args: Array[String]) : Unit = {
// get the execution environment
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
// get input data by connecting to the socket
val text = env.socketTextStream("192.168.29.132", 9000, '\\n')
// parse the data, group it, window it, and aggregate the counts
val windowCounts = text
.flatMap { w => w.split("\\\\s") }
.map { w => WordWithCount(w, 1) }
.keyBy("word")
.timeWindow(Time.seconds(5), Time.seconds(1))
.sum("count")
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1)
env.execute("Socket Window WordCount")
}
// Data type for words with count
case class WordWithCount(word: String, count: Long)
}
基本上是 Java 一半的代码量。个人感觉 Scala 做大数据统计代码还是挺合适的,虽然 Scala 门槛比较高。Scala 程序的运行方式跟 Java 一样。编写过程中如果出现以下错误,需要看看是不是 import 语句没写对
Error:(29, 16) could not find implicit value for evidence parameter of type org.apache.flink.api.common.typeinfo.TypeInformation[String]
.flatMap { w => w.split("\\s") }
解决方法
import org.apache.flink.streaming.api.scala._
以上便是 Flink 的简单入门,后续继续关注 Flink 框架。
欢迎关注公众号「渡码」
手机扫一扫
移动阅读更方便
你可能感兴趣的文章