MapReduce是一种面向大数据平台的分布式并行计算框架,它允许使用人员在不会分布式并行编程的情况下,将程序运行在分布式系统上。它提供的并行计算框架,能自动完成计算任务的并行处理,自动划分计算数据,在集群节点上自动分配和执行计算任务,自动收集计算结果,使得开发人员只用关心业务的实现逻辑,大大降低开发负担。
在编写MapReduce程序时,一般由三部分构成,分别是Map、Reduce和Dirver,其中Map和Reduce部分负责业务逻辑的实现,Driver部分为驱动类,负责调用任务,执行MapReduce程序。在编写MapReduce程序之前,需要先创建一个Maven工程,创建的方法为:https://www.cnblogs.com/ynqwer/p/14540108.html,为了方便管理,可以在该目录下面创建一个包,然后在这个包下写代码来完成MapRecude程序。在这个包下面创建三个类,分别实现Map阶段、Reduce阶段和Driver三部分的程序。
Map函数默认按行从HDFS读取数据进行处理,即从HDFS一行一行的将数据读取过来,读取过来的格式为<行号,行内容>,然后按一定的分隔符切割,最后按key-value的格式输出,即MapReduce的默认输入为一对Key-value对,输出也是一对key-value对。在编写代码时,需要继承MapReduce的Mapper类,并重写Map方法,代码如下:
package com.qwer.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/*
* WordCount案例Map阶段代码
* KEYIN, Map阶段输入K的类型:LongWritable
* VALUEIN, Map阶段输入V的类型:Text
* KEYOUT, Map阶段输出K的类型:Text
* VALUEOUT,Map阶段输出K的类型:IntWritable
*/
// Map阶段继承Mapper类
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
// 定义输出kv对的数据类型
Text outK = new Text();
IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
// 将输入的数据转换成String类型
String line = value.toString();
// 将数据按空格切分
String[] words = line.split(" ");
for (String word : words) {
outK.set(word);
context.write(outK, outV);
}
}
}
Reduce阶段的输入数据类型和Map阶段的输出数据类型是一样的,再拿到输入数据之后,就可以进行业务逻辑的编写了,比如WordCount案例需要统计单词数量,然后按照key-value的格式输出。Recude阶段需要继承MapRecude的Reducer类,并重写Reduce方法,代码如下:
package com.qwer.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/*
* WordCount案例Reduce阶段代码
* KEYIN, Reduce阶段输入K的类型:Text
* VALUEIN, Reduce阶段输入V的类型:IntWritable
* KEYOUT, Reduce阶段输出K的类型:Text
* VALUEOUT,Reduce阶段输出K的类型:IntWritable
*/
// Reduce阶段继承Reducer类
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
// 定义Reduce阶段输出值的类型
IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
// TODO Auto-generated method stub
// 统计单词的个数
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
context.write(key, outV);
}
}
Driver部分为驱动类,负责调用任务,执行MapReduce程序。其程序大概可以分为八个步骤:
根据上面步骤,写出代码如下:
package com.qwer.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/*
* WordCount案例Driver代码
* 1、获取job
* 2、设置jar包路径
* 3、关联Mapper和Reducer
* 4、设置Map输出kv类型
* 5、设置最终输出kv类型
* 6、设置输入路径
* 7、设置输出路径
* 8、提交任务
*/
public class WordCountDriver {
public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException {
// 1、获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2、设置jar包路径
job.setJarByClass(WordCountDriver.class);
// 3、关联Mapper和Reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4、设置Map输出kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5、设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6、设置输入地址
FileInputFormat.setInputPaths(job, new Path(args[0]));
// 7、设置输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 8、提交任务
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
三个类都写好之后,就可以打成jar包放到集群中执行了。在eclipse的左侧工程目录里面,鼠标右键点击工程名,然后选择Run AS->Maven clean,完成之后再次鼠标右键点击工程名,然后选择Run AS->Maven install,完成之后会在工程目录中的target目录下出现一个jar包
将jar包放到集群上就可以执行了。在HDFS中创建一个目录/input,往该目录中随便上传一个文件,然后在jar包所在的目录下执行
hadoop jar MapReduceDemo-0.0.1-SNAPSHOT.jar com.qwer.mapreduce.wordcount.WordCountDriver /input /output
(注意:上面的com.qwer.mapreduce.wordcount.WordCountDriver
为Driver类的全路径,/output为输出目录,如果在执行程序的时候该目录已经存在,程序会报错)
执行完毕后,会自动在HDFS中创建一个/output目录,该目录下为程序执行的结果。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章