Longhorn,企业级云原生容器分布式存储 - 监控(Prometheus+AlertManager+Grafana)
阅读原文时间:2021年08月25日阅读:1

内容来源于官方 Longhorn 1.1.2 英文技术手册。

  1. 设置 PrometheusGrafana 来监控 Longhorn
  2. Longhorn 指标集成到 Rancher 监控系统中
  3. Longhorn 监控指标
  4. 支持 Kubelet Volume 指标
  5. Longhorn 警报规则示例

概览

LonghornREST 端点 http://LONGHORN_MANAGER_IP:PORT/metrics 上以 Prometheus 文本格式原生公开指标。

有关所有可用指标的说明,请参阅 Longhorn's metrics

您可以使用 Prometheus, Graphite, Telegraf 等任何收集工具来抓取这些指标,然后通过 Grafana 等工具将收集到的数据可视化。

本文档提供了一个监控 Longhorn 的示例设置。监控系统使用 Prometheus 收集数据和警报,使用 Grafana 将收集的数据可视化/仪表板(visualizing/dashboarding)。 高级概述来看,监控系统包含:

  • Prometheus 服务器从 Longhorn 指标端点抓取和存储时间序列数据。Prometheus 还负责根据配置的规则和收集的数据生成警报。Prometheus 服务器然后将警报发送到 Alertmanager
  • AlertManager 然后管理这些警报(alerts),包括静默(silencing)、抑制(inhibition)、聚合(aggregation)和通过电子邮件、呼叫通知系统和聊天平台等方法发送通知。
  • GrafanaPrometheus 服务器查询数据并绘制仪表板进行可视化。

下图描述了监控系统的详细架构。

上图中有 2 个未提及的组件:

  • Longhorn 后端服务是指向 Longhorn manager pods 集的服务。Longhorn 的指标在端点 http://LONGHORN_MANAGER_IP:PORT/metricsLonghorn manager pods 中公开。
  • Prometheus operator 使在 Kubernetes 上运行 Prometheus 变得非常容易。operator 监视 3 个自定义资源:ServiceMonitorPrometheusAlertManager。当用户创建这些自定义资源时,Prometheus Operator 会使用用户指定的配置部署和管理 Prometheus server, AlerManager

安装

按照此说明将所有组件安装到 monitoring 命名空间中。要将它们安装到不同的命名空间中,请更改字段 namespace: OTHER_NAMESPACE

创建 monitoring 命名空间

apiVersion: v1
kind: Namespace
metadata:
  name: monitoring

安装 Prometheus Operator

部署 Prometheus Operator 及其所需的 ClusterRoleClusterRoleBindingService Account

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.3
  name: prometheus-operator
  namespace: monitoring
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus-operator
subjects:
- kind: ServiceAccount
  name: prometheus-operator
  namespace: monitoring
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.3
  name: prometheus-operator
  namespace: monitoring
rules:
- apiGroups:
  - apiextensions.k8s.io
  resources:
  - customresourcedefinitions
  verbs:
  - create
- apiGroups:
  - apiextensions.k8s.io
  resourceNames:
  - alertmanagers.monitoring.coreos.com
  - podmonitors.monitoring.coreos.com
  - prometheuses.monitoring.coreos.com
  - prometheusrules.monitoring.coreos.com
  - servicemonitors.monitoring.coreos.com
  - thanosrulers.monitoring.coreos.com
  resources:
  - customresourcedefinitions
  verbs:
  - get
  - update
- apiGroups:
  - monitoring.coreos.com
  resources:
  - alertmanagers
  - alertmanagers/finalizers
  - prometheuses
  - prometheuses/finalizers
  - thanosrulers
  - thanosrulers/finalizers
  - servicemonitors
  - podmonitors
  - prometheusrules
  verbs:
  - '*'
- apiGroups:
  - apps
  resources:
  - statefulsets
  verbs:
  - '*'
- apiGroups:
  - ""
  resources:
  - configmaps
  - secrets
  verbs:
  - '*'
- apiGroups:
  - ""
  resources:
  - pods
  verbs:
  - list
  - delete
- apiGroups:
  - ""
  resources:
  - services
  - services/finalizers
  - endpoints
  verbs:
  - get
  - create
  - update
  - delete
- apiGroups:
  - ""
  resources:
  - nodes
  verbs:
  - list
  - watch
- apiGroups:
  - ""
  resources:
  - namespaces
  verbs:
  - get
  - list
  - watch
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.3
  name: prometheus-operator
  namespace: monitoring
spec:
  replicas: 1
  selector:
    matchLabels:
      app.kubernetes.io/component: controller
      app.kubernetes.io/name: prometheus-operator
  template:
    metadata:
      labels:
        app.kubernetes.io/component: controller
        app.kubernetes.io/name: prometheus-operator
        app.kubernetes.io/version: v0.38.3
    spec:
      containers:
      - args:
        - --kubelet-service=kube-system/kubelet
        - --logtostderr=true
        - --config-reloader-image=jimmidyson/configmap-reload:v0.3.0
        - --prometheus-config-reloader=quay.io/prometheus-operator/prometheus-config-reloader:v0.38.3
        image: quay.io/prometheus-operator/prometheus-operator:v0.38.3
        name: prometheus-operator
        ports:
        - containerPort: 8080
          name: http
        resources:
          limits:
            cpu: 200m
            memory: 200Mi
          requests:
            cpu: 100m
            memory: 100Mi
        securityContext:
          allowPrivilegeEscalation: false
      nodeSelector:
        beta.kubernetes.io/os: linux
      securityContext:
        runAsNonRoot: true
        runAsUser: 65534
      serviceAccountName: prometheus-operator
---
apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.3
  name: prometheus-operator
  namespace: monitoring
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator
    app.kubernetes.io/version: v0.38.3
  name: prometheus-operator
  namespace: monitoring
spec:
  clusterIP: None
  ports:
  - name: http
    port: 8080
    targetPort: http
  selector:
    app.kubernetes.io/component: controller
    app.kubernetes.io/name: prometheus-operator

安装 Longhorn ServiceMonitor

Longhorn ServiceMonitor 有一个标签选择器 app: longhorn-manager 来选择 Longhorn 后端服务。

稍后,Prometheus CRD 可以包含 Longhorn ServiceMonitor,以便 Prometheus server 可以发现所有 Longhorn manager pods 及其端点。

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: longhorn-prometheus-servicemonitor
  namespace: monitoring
  labels:
    name: longhorn-prometheus-servicemonitor
spec:
  selector:
    matchLabels:
      app: longhorn-manager
  namespaceSelector:
    matchNames:
    - longhorn-system
  endpoints:
  - port: manager

安装和配置 Prometheus AlertManager

  1. 使用 3 个实例创建一个高可用的 Alertmanager 部署:

    apiVersion: monitoring.coreos.com/v1
    kind: Alertmanager
    metadata:
      name: longhorn
      namespace: monitoring
    spec:
      replicas: 3
  2. 除非提供有效配置,否则 Alertmanager 实例将无法启动。有关 Alertmanager 配置的更多说明,请参见此处。下面的代码给出了一个示例配置:

    global:
      resolve_timeout: 5m
    route:
      group_by: [alertname]
      receiver: email_and_slack
    receivers:
    - name: email_and_slack
      email_configs:
      - to: <the email address to send notifications to>
        from: <the sender address>
        smarthost: <the SMTP host through which emails are sent>
        # SMTP authentication information.
        auth_username: <the username>
        auth_identity: <the identity>
        auth_password: <the password>
        headers:
          subject: 'Longhorn-Alert'
        text: |-
          {{ range .Alerts }}
            *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
            *Description:* {{ .Annotations.description }}
            *Details:*
            {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
            {{ end }}
          {{ end }}
      slack_configs:
      - api_url: <the Slack webhook URL>
        channel: <the channel or user to send notifications to>
        text: |-
          {{ range .Alerts }}
            *Alert:* {{ .Annotations.summary }} - `{{ .Labels.severity }}`
            *Description:* {{ .Annotations.description }}
            *Details:*
            {{ range .Labels.SortedPairs }} • *{{ .Name }}:* `{{ .Value }}`
            {{ end }}
          {{ end }}

    将上述 Alertmanager 配置保存在名为 alertmanager.yaml 的文件中,并使用 kubectl 从中创建一个 secret

    Alertmanager 实例要求 secret 资源命名遵循 alertmanager-{ALERTMANAGER_NAME} 格式。

    在上一步中,Alertmanager 的名称是 longhorn,所以 secret 名称必须是 alertmanager-longhorn

    $ kubectl create secret generic alertmanager-longhorn --from-file=alertmanager.yaml -n monitoring
  3. 为了能够查看 AlertmanagerWeb UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service

    apiVersion: v1
    kind: Service
    metadata:
      name: alertmanager-longhorn
      namespace: monitoring
    spec:
      type: NodePort
      ports:
      - name: web
        nodePort: 30903
        port: 9093
        protocol: TCP
        targetPort: web
      selector:
        alertmanager: longhorn

    创建上述服务后,您可以通过节点的 IP 和端口 30903 访问 Alertmanagerweb UI

    使用上面的 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Alertmanagerweb UI

安装和配置 Prometheus server

  1. 创建定义警报条件的 PrometheusRule 自定义资源。

    apiVersion: monitoring.coreos.com/v1
    kind: PrometheusRule
    metadata:
      labels:
        prometheus: longhorn
        role: alert-rules
      name: prometheus-longhorn-rules
      namespace: monitoring
    spec:
      groups:
      - name: longhorn.rules
        rules:
        - alert: LonghornVolumeUsageCritical
          annotations:
            description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% used for
              more than 5 minutes.
            summary: Longhorn volume capacity is over 90% used.
          expr: 100 * (longhorn_volume_usage_bytes / longhorn_volume_capacity_bytes) > 90
          for: 5m
          labels:
            issue: Longhorn volume {{$labels.volume}} usage on {{$labels.node}} is critical.
            severity: critical

    有关如何定义警报规则的更多信息,请参见https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules

  2. 如果激活了 RBAC 授权,则为 Prometheus Pod 创建 ClusterRoleClusterRoleBinding

    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: prometheus
      namespace: monitoring
    
    
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRole
    metadata:
      name: prometheus
      namespace: monitoring
    rules:
    - apiGroups: [""]
      resources:
      - nodes
      - services
      - endpoints
      - pods
      verbs: ["get", "list", "watch"]
    - apiGroups: [""]
      resources:
      - configmaps
      verbs: ["get"]
    - nonResourceURLs: ["/metrics"]
      verbs: ["get"]
    
    
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRoleBinding
    metadata:
      name: prometheus
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: prometheus
    subjects:
    - kind: ServiceAccount
      name: prometheus
      namespace: monitoring
  3. 创建 Prometheus 自定义资源。请注意,我们在 spec 中选择了 Longhorn 服务监视器(service monitor)和 Longhorn 规则。

    apiVersion: monitoring.coreos.com/v1
    kind: Prometheus
    metadata:
      name: prometheus
      namespace: monitoring
    spec:
      replicas: 2
      serviceAccountName: prometheus
      alerting:
        alertmanagers:
          - namespace: monitoring
            name: alertmanager-longhorn
            port: web
      serviceMonitorSelector:
        matchLabels:
          name: longhorn-prometheus-servicemonitor
      ruleSelector:
        matchLabels:
          prometheus: longhorn
          role: alert-rules
  4. 为了能够查看 Prometheus 服务器的 web UI,请通过 Service 公开它。一个简单的方法是使用 NodePort 类型的 Service

    apiVersion: v1
    kind: Service
    metadata:
      name: prometheus
      namespace: monitoring
    spec:
      type: NodePort
      ports:
      - name: web
        nodePort: 30904
        port: 9090
        protocol: TCP
        targetPort: web
      selector:
        prometheus: prometheus

    创建上述服务后,您可以通过节点的 IP 和端口 30904 访问 Prometheus serverweb UI

    此时,您应该能够在 Prometheus server UI 的目标和规则部分看到所有 Longhorn manager targets 以及 Longhorn rules

    使用上述 NodePort service 进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Prometheus serverweb UI

安装 Grafana

  1. 创建 Grafana 数据源配置:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: grafana-datasources
      namespace: monitoring
    data:
      prometheus.yaml: |-
        {
            "apiVersion": 1,
            "datasources": [
                {
                   "access":"proxy",
                    "editable": true,
                    "name": "prometheus",
                    "orgId": 1,
                    "type": "prometheus",
                    "url": "http://prometheus:9090",
                    "version": 1
                }
            ]
        }
  2. 创建 Grafana 部署:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: grafana
      namespace: monitoring
      labels:
        app: grafana
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: grafana
      template:
        metadata:
          name: grafana
          labels:
            app: grafana
        spec:
          containers:
          - name: grafana
            image: grafana/grafana:7.1.5
            ports:
            - name: grafana
              containerPort: 3000
            resources:
              limits:
                memory: "500Mi"
                cpu: "300m"
              requests:
                memory: "500Mi"
                cpu: "200m"
            volumeMounts:
              - mountPath: /var/lib/grafana
                name: grafana-storage
              - mountPath: /etc/grafana/provisioning/datasources
                name: grafana-datasources
                readOnly: false
          volumes:
            - name: grafana-storage
              emptyDir: {}
            - name: grafana-datasources
              configMap:
                  defaultMode: 420
                  name: grafana-datasources
  3. NodePort 32000 上暴露 Grafana

    apiVersion: v1
    kind: Service
    metadata:
      name: grafana
      namespace: monitoring
    spec:
      selector:
        app: grafana
      type: NodePort
      ports:
        - port: 3000
          targetPort: 3000
          nodePort: 32000

    使用上述 NodePort 服务进行快速验证,因为它不通过 TLS 连接进行通信。您可能希望将服务类型更改为 ClusterIP,并设置一个 Ingress-controller 以通过 TLS 连接公开 Grafana

  4. 使用端口 32000 上的任何节点 IP 访问 Grafana 仪表板。默认凭据为:

    User: admin
    Pass: admin
  5. 安装 Longhorn dashboard

    进入 Grafana 后,导入预置的面板:https://grafana.com/grafana/dashboards/13032

    有关如何导入 Grafana dashboard 的说明,请参阅 https://grafana.com/docs/grafana/latest/reference/export_import/

    成功后,您应该会看到以下 dashboard

关于 Rancher 监控系统

使用 Rancher,您可以通过与领先的开源监控解决方案 Prometheus 的集成来监控集群节点、Kubernetes 组件和软件部署的状态和进程。

有关如何部署/启用 Rancher 监控系统的说明,请参见https://rancher.com/docs/rancher/v2.x/en/monitoring-alerting/

Longhorn 指标添加到 Rancher 监控系统

如果您使用 Rancher 来管理您的 Kubernetes 并且已经启用 Rancher 监控,您可以通过简单地部署以下 ServiceMonitorLonghorn 指标添加到 Rancher 监控中:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: longhorn-prometheus-servicemonitor
  namespace: longhorn-system
  labels:
    name: longhorn-prometheus-servicemonitor
spec:
  selector:
    matchLabels:
      app: longhorn-manager
  namespaceSelector:
    matchNames:
    - longhorn-system
  endpoints:
  - port: manager

创建 ServiceMonitor 后,Rancher 将自动发现所有 Longhorn 指标。

然后,您可以设置 Grafana 仪表板以进行可视化。

Volume(卷)

指标名

说明

示例

longhorn_volume_actual_size_bytes

对应节点上卷的每个副本使用的实际空间

longhorn_volume_actual_size_bytes{node="worker-2",volume="testvol"} 1.1917312e+08

longhorn_volume_capacity_bytes

此卷的配置大小(以 byte 为单位)

longhorn_volume_capacity_bytes{node="worker-2",volume="testvol"} 6.442450944e+09

longhorn_volume_state

本卷状态: 1=creating, 2=attached, 3=Detached, 4=Attaching, 5=Detaching, 6=Deleting

longhorn_volume_state{node="worker-2",volume="testvol"} 2

longhorn_volume_robustness

本卷的健壮性: 0=unknown, 1=healthy, 2=degraded, 3=faulted

longhorn_volume_robustness{node="worker-2",volume="testvol"} 1

Node(节点)

指标名

说明

示例

longhorn_node_status

该节点的状态: 1=true, 0=false

longhorn_node_status{condition="ready",condition_reason="",node="worker-2"} 1

longhorn_node_count_total

Longhorn 系统中的节点总数

longhorn_node_count_total 4

longhorn_node_cpu_capacity_millicpu

此节点上的最大可分配 CPU

longhorn_node_cpu_capacity_millicpu{node="worker-2"} 2000

longhorn_node_cpu_usage_millicpu

此节点上的 CPU 使用率

longhorn_node_cpu_usage_millicpu{node="pworker-2"} 186

longhorn_node_memory_capacity_bytes

此节点上的最大可分配内存

longhorn_node_memory_capacity_bytes{node="worker-2"} 4.031229952e+09

longhorn_node_memory_usage_bytes

此节点上的内存使用情况

longhorn_node_memory_usage_bytes{node="worker-2"} 1.833582592e+09

longhorn_node_storage_capacity_bytes

本节点的存储容量

longhorn_node_storage_capacity_bytes{node="worker-3"} 8.3987283968e+10

longhorn_node_storage_usage_bytes

该节点的已用存储

longhorn_node_storage_usage_bytes{node="worker-3"} 9.060941824e+09

longhorn_node_storage_reservation_bytes

此节点上为其他应用程序和系统保留的存储空间

longhorn_node_storage_reservation_bytes{node="worker-3"} 2.519618519e+10

Disk(磁盘)

指标名

说明

示例

longhorn_disk_capacity_bytes

此磁盘的存储容量

longhorn_disk_capacity_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 8.3987283968e+10

longhorn_disk_usage_bytes

此磁盘的已用存储空间

longhorn_disk_usage_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 9.060941824e+09

longhorn_disk_reservation_bytes

此磁盘上为其他应用程序和系统保留的存储空间

longhorn_disk_reservation_bytes{disk="default-disk-8b28ee3134628183",node="worker-3"} 2.519618519e+10

Instance Manager(实例管理器)

指标名

说明

示例

longhorn_instance_manager_cpu_usage_millicpu

这个 longhorn 实例管理器的 CPU 使用率

longhorn_instance_manager_cpu_usage_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 80

longhorn_instance_manager_cpu_requests_millicpu

在这个 Longhorn 实例管理器的 kubernetes 中请求的 CPU 资源

longhorn_instance_manager_cpu_requests_millicpu{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 250

longhorn_instance_manager_memory_usage_bytes

这个 longhorn 实例管理器的内存使用情况

longhorn_instance_manager_memory_usage_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 2.4072192e+07

longhorn_instance_manager_memory_requests_bytes

这个 longhorn 实例管理器在 Kubernetes 中请求的内存

longhorn_instance_manager_memory_requests_bytes{instance_manager="instance-manager-e-2189ed13",instance_manager_type="engine",node="worker-2"} 0

Manager(管理器)

指标名

说明

示例

longhorn_manager_cpu_usage_millicpu

这个 Longhorn Manager 的 CPU 使用率

longhorn_manager_cpu_usage_millicpu{manager="longhorn-manager-5rx2n",node="worker-2"} 27

longhorn_manager_memory_usage_bytes

这个 Longhorn Manager 的内存使用情况

longhorn_manager_memory_usage_bytes{manager="longhorn-manager-5rx2n",node="worker-2"} 2.6144768e+07

关于 Kubelet Volume 指标

Kubelet 公开了以下指标

  1. kubelet_volume_stats_capacity_bytes
  2. kubelet_volume_stats_available_bytes
  3. kubelet_volume_stats_used_bytes
  4. kubelet_volume_stats_inodes
  5. kubelet_volume_stats_inodes_free
  6. kubelet_volume_stats_inodes_used

这些指标衡量与 Longhorn 块设备内的 PVC 文件系统相关的信息。

它们与 longhorn_volume_* 指标不同,后者测量特定于 Longhorn 块设备(block device)的信息。

您可以设置一个监控系统来抓取 Kubelet 指标端点以获取 PVC 的状态并设置异常事件的警报,例如 PVC 即将耗尽存储空间。

一个流行的监控设置是 prometheus-operator/kube-prometheus-stack,,它抓取 kubelet_volume_stats_* 指标并为它们提供仪表板和警报规则。

Longhorn CSI 插件支持

v1.1.0 中,Longhorn CSI 插件根据 CSI spec 支持 NodeGetVolumeStats RPC。

这允许 kubelet 查询 Longhorn CSI 插件以获取 PVC 的状态。

然后 kubeletkubelet_volume_stats_* 指标中公开该信息。

我们在下面提供了几个示例 Longhorn 警报规则供您参考。请参阅此处获取所有可用 Longhorn 指标的列表并构建您自己的警报规则。

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
  labels:
    prometheus: longhorn
    role: alert-rules
  name: prometheus-longhorn-rules
  namespace: monitoring
spec:
  groups:
  - name: longhorn.rules
    rules:
    - alert: LonghornVolumeActualSpaceUsedWarning
      annotations:
        description: The actual space used by Longhorn volume {{$labels.volume}} on {{$labels.node}} is at {{$value}}% capacity for
          more than 5 minutes.
        summary: The actual used space of Longhorn volume is over 90% of the capacity.
      expr: (longhorn_volume_actual_size_bytes / longhorn_volume_capacity_bytes) * 100 > 90
      for: 5m
      labels:
        issue: The actual used space of Longhorn volume {{$labels.volume}} on {{$labels.node}} is high.
        severity: warning
    - alert: LonghornVolumeStatusCritical
      annotations:
        description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Fault for
          more than 2 minutes.
        summary: Longhorn volume {{$labels.volume}} is Fault
      expr: longhorn_volume_robustness == 3
      for: 5m
      labels:
        issue: Longhorn volume {{$labels.volume}} is Fault.
        severity: critical
    - alert: LonghornVolumeStatusWarning
      annotations:
        description: Longhorn volume {{$labels.volume}} on {{$labels.node}} is Degraded for
          more than 5 minutes.
        summary: Longhorn volume {{$labels.volume}} is Degraded
      expr: longhorn_volume_robustness == 2
      for: 5m
      labels:
        issue: Longhorn volume {{$labels.volume}} is Degraded.
        severity: warning
    - alert: LonghornNodeStorageWarning
      annotations:
        description: The used storage of node {{$labels.node}} is at {{$value}}% capacity for
          more than 5 minutes.
        summary:  The used storage of node is over 70% of the capacity.
      expr: (longhorn_node_storage_usage_bytes / longhorn_node_storage_capacity_bytes) * 100 > 70
      for: 5m
      labels:
        issue: The used storage of node {{$labels.node}} is high.
        severity: warning
    - alert: LonghornDiskStorageWarning
      annotations:
        description: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is at {{$value}}% capacity for
          more than 5 minutes.
        summary:  The used storage of disk is over 70% of the capacity.
      expr: (longhorn_disk_usage_bytes / longhorn_disk_capacity_bytes) * 100 > 70
      for: 5m
      labels:
        issue: The used storage of disk {{$labels.disk}} on node {{$labels.node}} is high.
        severity: warning
    - alert: LonghornNodeDown
      annotations:
        description: There are {{$value}} Longhorn nodes which have been offline for more than 5 minutes.
        summary: Longhorn nodes is offline
      expr: longhorn_node_total - (count(longhorn_node_status{condition="ready"}==1) OR on() vector(0))
      for: 5m
      labels:
        issue: There are {{$value}} Longhorn nodes are offline
        severity: critical
    - alert: LonghornIntanceManagerCPUUsageWarning
      annotations:
        description: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is {{$value}}% for
          more than 5 minutes.
        summary: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} has CPU Usage / CPU request is over 300%.
      expr: (longhorn_instance_manager_cpu_usage_millicpu/longhorn_instance_manager_cpu_requests_millicpu) * 100 > 300
      for: 5m
      labels:
        issue: Longhorn instance manager {{$labels.instance_manager}} on {{$labels.node}} consumes 3 times the CPU request.
        severity: warning
    - alert: LonghornNodeCPUUsageWarning
      annotations:
        description: Longhorn node {{$labels.node}} has CPU Usage / CPU capacity is {{$value}}% for
          more than 5 minutes.
        summary: Longhorn node {{$labels.node}} experiences high CPU pressure for more than 5m.
      expr: (longhorn_node_cpu_usage_millicpu / longhorn_node_cpu_capacity_millicpu) * 100 > 90
      for: 5m
      labels:
        issue: Longhorn node {{$labels.node}} experiences high CPU pressure.
        severity: warning

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules

查看有关如何定义警报规则的更多信息。

公众号:黑客下午茶

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章