作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/rotting-oranges/
In a town, there are N
people labelled from 1
to N
. There is a rumor that one of these people is secretly the town judge.
If the town judge exists, then:
You are given trust
, an array of pairs trust[i] = [a, b]
representing that the person labelled a
trusts the person labelled b
.
If the town judge exists and can be identified, return the label of the town judge. Otherwise, return -1.
Example 1:
Input: N = 2, trust = [[1,2]]
Output: 2
Example 2:
Input: N = 3, trust = [[1,3],[2,3]]
Output: 3
Example 3:
Input: N = 3, trust = [[1,3],[2,3],[3,1]]
Output: -1
Example 4:
Input: N = 3, trust = [[1,2],[2,3]]
Output: -1
Example 5:
Input: N = 4, trust = [[1,3],[1,4],[2,3],[2,4],[4,3]]
Output: 3
Note:
镇里有编号1~N的N个人,如果有个法官存在的话,需要满足三个条件:
给出的trust[i] = [a, b]代表了a信任b。
如果法官存在,返回他的序号,否则返回-1.
其实这个就是有向图,[a, b]表示从顶点a出发指向顶点b的一条有向边。
所以,题目的意思就是:是否存在且只存在一个顶点,所有的顶点都指向他,但是这个点不指向任何点。用术语来说就是该顶点的入度是N - 1,出度是0.
我们可以使用一个数组存储每个点的入度和出度的差
,当某个点的入度和出度的差
是N - 1时,代表他是法官,否则不存在。
证明:如果入度和出度的差
= N - 1,又入度、出度 >= 0,那么入度 = N- 1,出度 = 0,满足条件1和2.一旦存在一个点满足条件,那么说明这个点没有出度,所以不存在另一个点的入度是N - 1,满足条件3.
C++代码如下:
class Solution {
public:
int findJudge(int N, vector<vector<int>>& trust) {
vector<int> g(N + 1, 0); // in-degree - out-degree
for (auto t : trust) {
++g[t[1]];
--g[t[0]];
}
for (int i = 1; i <= N; ++i) {
if (g[i] == N - 1)
return i;
}
return -1;
}
};
2019 年 2 月 24 日 —— 周末又结束了
手机扫一扫
移动阅读更方便
你可能感兴趣的文章