python实现分水岭算法分割遥感图像
阅读原文时间:2023年07月08日阅读:6

1. 定义

  分水岭算法(watershed algorithm)可以将图像中的边缘转化为“山脉”,将均匀区域转化为“山谷”,在这方面有助于分割目标。
  分水岭算法:是一种基于拓扑理论的数学形态学的分割方法。把图像看作是测地学上的拓扑地貌,图像中的每一个点像素值的灰度值表示该点的海拔高度,每一个局部极小值及其影响的区域称为“集水盆”,集水盆的边界可以看成分水岭。在每一个局部极小值表面刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢的向外扩展,在两个集水盆汇合处构建大坝,形成分水岭。

迭代标注过程:

  1. 排序过程:对每个像素的灰度级进行从低到高的排序
  2. 淹没过程:对每一个局部最小值在h阶高度的影响域采用先进先出结构判断及标注。

2.实现算法:watershed()函数

  这些标记的值可以使用findContours()函数和drawContours()函数由二进制的掩模检索出来

3.程序代码:

import numpy as np
import cv2
from osgeo import gdal, gdal_array
import shapefile
try:
import Image
import ImageDraw
except:
from PIL import Image, ImageDraw

def tif_jpg(rasterfile):
in_ds = gdal.Open(rasterfile) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
block_data = in_ds.ReadAsArray(0, 0, xsize, ysize).astype(np.float32)
B = block_data[0, :, :]

G = block\_data\[ 1,:, :\]  
R = block\_data\[2,:, :\]  
R1 =  (R/np.max(R)\*255).astype(np.int16)  
G1 = (G / np.max(G) \* 255).astype(np.int16)  
B1 = (B / np.max(B) \* 255).astype(np.int16)  
data2 = cv2.merge(\[R1,G1,B1\])  
return data2

def watershed(path,out):
print("分水岭分割")
in_ds = gdal.Open(path) # 打开样本文件
xsize = in_ds.RasterXSize # 获取行列数
ysize = in_ds.RasterYSize
bands = in_ds.RasterCount
geotransform = in_ds.GetGeoTransform()
projection = in_ds.GetProjectionRef()
#tif转jpg 非255通道转换为255通道
img=tif_jpg(path).astype(np.uint8)
# 转换为灰度图片
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# canny边缘检测 函数返回一副二值图,其中包含检测出的边缘。
canny = cv2.Canny(gray_img, 80,120)
# 寻找图像轮廓 返回修改后的图像 图像的轮廓 以及它们的层次
# canny, contours, hierarchy = cv2.findContours(canny, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours, hierarchy = cv2.findContours(canny, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 32位有符号整数类型,
marks = np.zeros(img.shape[:2], np.int32)
# findContours检测到的轮廓
imageContours = np.zeros(img.shape[:2], np.uint8)
# 轮廓颜色
compCount = 0
index = 0
# 绘制每一个轮廓
for index in range(len(contours)):
# 对marks进行标记,对不同区域的轮廓使用不同的亮度绘制,相当于设置注水点,有多少个轮廓,就有多少个轮廓
# 图像上不同线条的灰度值是不同的,底部略暗,越往上灰度越高
marks = cv2.drawContours(marks, contours, index, (index, index, index), 1, 8, hierarchy)
# 绘制轮廓,亮度一样
imageContours = cv2.drawContours(imageContours, contours, index, (255, 255, 255), 1, 8, hierarchy)
# 查看 使用线性变换转换输入数组元素成8位无符号整型。
markerShows = cv2.convertScaleAbs(marks)
# cv2.imshow('imageContours',imageContours)
# 使用分水岭算法
marks = cv2.watershed(img, marks)
driver = gdal.GetDriverByName('GTiff')
outfile_lake = out + "\\" + "watershed_cut.tif"
out_dataset = driver.Create(outfile_lake, xsize, ysize, 1, gdal.GDT_Float32)
out_band1 = out_dataset.GetRasterBand(1)
out_band1.WriteArray(marks)
out_dataset.SetGeoTransform(geotransform) # 写入仿射变换
out_dataset.SetProjection(projection)
return outfile_lake

if __name__ == "__main__":
path = r"D:\data\实验数据\fenlei2.tif"
out = r"D:\data\实验结果\分割结果"
watershed(path, out)

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章