TMC ,即“透明多级缓存( Transparent Multilevel Cache )”,是有赞 PaaS 团队给公司内应用提供的整体缓存解决方案。
TMC 在通用“分布式缓存解决方案(如 CodisProxy + Redis ,如有赞自研分布式缓存系统 zanKV )”基础上,增加了以下功能:
以帮助应用层解决缓存使用过程中出现的热点访问问题。
使用有赞服务的电商商家数量和类型很多,商家会不定期做一些“商品秒杀”、“商品推广”活动,导致“营销活动”、“商品详情”、“交易下单”等链路应用出现 缓存热点访问 的情况:
为了应对以上问题,需要一个能够 自动发现热点 并 将热点缓存访问请求前置在应用层本地缓存 的解决方案,这就是 TMC 产生的原因。
基于上述描述,我们总结了下列 多级缓存解决方案 需要解决的需求痛点:
TMC 聚焦上述痛点,设计并实现了整体解决方案。以支持“热点探测”和“本地缓存”,减少热点访问时对下游分布式缓存服务的冲击,避免影响应用服务的性能及稳定性。
TMC 整体架构如上图,共分为三层:
本篇聚焦在应用层客户端的“热点探测”、“本地缓存”功能。
TMC 是如何减少对业务应用系统的入侵,做到透明接入的?
对于公司 Java 应用服务,在缓存客户端使用方式上分为两类:
spring.data.redis
包,使用RedisTemplate
编写业务代码;youzan.framework.redis
包,使用RedisClient
编写业务代码;不论使用以上那种方式,最终通过JedisPool
创建的Jedis
对象与缓存服务端代理层做请求交互。
TMC 对原生jedis包的JedisPool
和Jedis
类做了改造,在JedisPool初始化过程中集成TMC“热点发现”+“本地缓存”功能Hermes-SDK
包的初始化逻辑,使Jedis
客户端与缓存服务端代理层交互时先与Hermes-SDK
交互,从而完成 “热点探测”+“本地缓存”功能的透明接入。
对于 Java 应用服务,只需使用特定版本的 jedis-jar 包,无需修改代码,即可接入 TMC 使用“热点发现”+“本地缓存”功能,做到了对应用系统的最小入侵。
TMC 本地缓存整体结构分为如下模块:
1) key 值获取
Callable
回调 Jedis-Client 的原生接口,从 缓存集群 拿到 value 值;2)key值过期
set()
del()
expire()
接口时会导致对应 key 值失效,Jedis-Client 会同步调用 Hermes-SDK 的invalid()
方法告知其“ key 值失效”事件;3)热点发现
4)配置读取
TMC本地缓存稳定性表现在以下方面:
rsyslog技术
对“ key 访问事件”进行异步化上报,不会阻塞业务;TMC 本地缓存一致性表现在以下方面:
TMC 热点发现流程分为四步:
<key,热度>
的形式进行 热度排序汇总;Hermes-SDK 通过本地rsyslog
将 key访问事件 以协议格式放入 kafka ,Hermes服务端集群 的每个节点消费 kafka 消息,实时获取 key访问事件。
访问事件协议格式如下:
Hermes服务端集群 节点将收集到的 key访问事件 存储在本地内存中,内存数据结构为Map<String, Map<String, LongAdder>>
,对应业务含义映射为Map< appName , Map< uniqueKey , 热度 >>
。
Hermes服务端集群 节点,对每个App的每个 key ,维护了一个 时间轮:
Hermes服务端集群 节点,对每个 App 每3秒 生成一个 映射任务 ,交由节点内 “缓存映射线程池” 执行。映射任务 内容如下:
Map< appName , Map< uniqueKey , 热度 >>
中取出 appName 对应的Map Map< uniqueKey , 热度 >>
;Map< uniqueKey , 热度 >>
中的 key ,对每个 key 取出其热度存入其 时间轮 对应的时间片中;完成第二步“热度滑窗”后,映射任务 继续对当前 App 进行“热度汇聚”工作:
遍历 App 的 key ,将每个 key 的 时间轮 热度进行汇总(即30秒时间窗口内总热度)得到探测时刻 滑窗总热度;
将 < key , 滑窗总热度 >
以排序集合的方式存入 Redis存储服务 中,即 热度汇聚结果;
在前几步,每3秒 一次的 映射任务 执行,对每个 App 都会产生一份当前时刻的 热度汇聚结果 ;
Hermes服务端集群 中的“热点探测”节点,对每个 App ,只需周期性从其最近一份 热度汇聚结果 中取出达到热度阈值的 TopN 的 key 列表,即可得到本次探测的 热点key列表;
TMC 热点发现整体流程如下图:
Hermes-SDK基于rsyslog + kafka 实时上报 key访问事件。 映射任务 3秒一个周期完成“热度滑窗” + “热度汇聚”工作,当有 热点访问场景 出现时最长3秒即可探测出对应 热点key。
key 的热度汇聚结果由“基于时间轮实现的滑动窗口”汇聚得到,相对准确地反应当前及最近正在发生访问分布。
Hermes服务端集群 节点无状态,节点数可基于 kafka 的 partition 数量横向扩展。
“热度滑窗” + “热度汇聚” 过程基于 App 数量,在单节点内多线程扩展。
有赞商家通过快手直播平台为某商品搞活动,造成该商品短时间内被集中访问产生访问热点,活动期间 TMC 记录的实际热点访问效果数据如下:
* 上图蓝线为应用集群调用get()
方法访问缓存次数 * 上图绿线为获取缓存操作命中 TMC 本地缓存的次数* 上图为本地缓存命中率曲线图
可以看出活动期间缓存请求量及本地缓存命中量均有明显增长,本地缓存命中率达到近 80% (即应用集群中 80% 的缓存查询请求被 TMC 本地缓存拦截)。
* 上图为应用接口QPS曲线* 上图为应用接口RT曲线
可以看出活动期间应用接口的请求量有明显增长,由于 TMC 本地缓存的效果应用接口的 RT 反而出现下降。
在有赞, TMC 目前已为商品中心、物流中心、库存中心、营销活动、用户中心、网关&消息等多个核心应用模块提供服务,后续应用也在陆续接入中。
TMC 在提供“热点探测” + “本地缓存”的核心能力同时,也为应用服务提供了灵活的配置选择,应用服务可以结合实际业务情况在“热点阈值”、“热点key探测数量”、“热点黑白名单”维度进行自由配置以达到更好的使用效果。
最后, TMC 的迭代还在持续进行中…
手机扫一扫
移动阅读更方便
你可能感兴趣的文章