kubelet源码分析——启动Pod
阅读原文时间:2021年09月30日阅读:1

前文说到Kubelet启动时,调用到kubelet.Run方法,里面最核心的就是调用到kubelet.syncLoop。它是一个循环,这个循环里面有若干个检查和同步操作,其中一个是地在监听Pod的增删改事件,当一个Pod被Scheduler调度到某个Node之后,就会触发到kubelet.syncLoop里面的事件,经过一系列的操作,最后达到Pod正常跑起来。

kubelet.syncLoop    /pkg/kubelet/kubelet.go
|--kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh)
    |--u, open := <-configCh
    |--handler.HandlePodAdditions(u.Pods)即Kubelet.HandlePodAdditions
        |--sort.Sort(sliceutils.PodsByCreationTime(pods))
        |--kl.handleMirrorPod(pod, start)
            |--kl.dispatchWork
        |--kl.dispatchWork(pod, kubetypes.SyncPodCreate, mirrorPod, start)
            |--kl.podWorkers.UpdatePod即podWorkers.UpdatePod /pkg/kubelet/pod_worker.go
                |--p.managePodLoop
                    |--p.syncPodFn

syncLoop

即使没有需要更新的 pod 配置,kubelet 也会定时去做同步和清理 pod 的工作。然后在 for 循环中一直调用 syncLoopIteration,如果在每次循环过程中出现比较严重的错误,kubelet 会记录到 runtimeState 中,遇到错误就等待 5 秒中继续循环。

func (kl *Kubelet) syncLoop(updates <-chan kubetypes.PodUpdate, handler SyncHandler) {
    // syncTicker 每秒检测一次是否有需要同步的 pod workers
    syncTicker := time.NewTicker(time.Second)
    defer syncTicker.Stop()
    // 每两秒检测一次是否有需要清理的 pod
    housekeepingTicker := time.NewTicker(housekeepingPeriod)
    defer housekeepingTicker.Stop()
    // pod 的生命周期变化
    plegCh := kl.pleg.Watch()
    ...
    for {
        if err := kl.runtimeState.runtimeErrors(); err != nil {
            klog.Errorf("skipping pod synchronization - %v", err)
            // exponential backoff
            time.Sleep(duration)
            duration = time.Duration(math.Min(float64(max), factor*float64(duration)))
            continue
        }
        // reset backoff if we have a success
        duration = base
        ...
        if !kl.syncLoopIteration(updates, handler, syncTicker.C, housekeepingTicker.C, plegCh) {
            break
        }
        ...
    }
    ...
}

syncLoopIteration

syncLoopIteration 这个方法就会对多个管道进行遍历,发现任何一个管道有消息就交给 handler 去处理。对于pod创建相关的就是configCh,它会传递来自3个来源(file,http,apiserver)的pod的变化(增,删,改)。其他相关管道还有没1秒同步一次pod的syncCh,每1秒检查一下是否需要清理pod的housekeepingCh 等等。

func (kl *Kubelet) syncLoopIteration(configCh <-chan kubetypes.PodUpdate, handler SyncHandler,
    syncCh <-chan time.Time, housekeepingCh <-chan time.Time, plegCh <-chan *pleg.PodLifecycleEvent) bool {
    select {
    case u, open := <-configCh: //三个来源的更新事件
        ....
        switch u.Op {
        case kubetypes.ADD:
            klog.V(2).Infof("SyncLoop (ADD, %q): %q", u.Source, format.Pods(u.Pods))
            // After restarting, kubelet will get all existing pods through
            // ADD as if they are new pods. These pods will then go through the
            // admission process and *may* be rejected. This can be resolved
            // once we have checkpointing.
            handler.HandlePodAdditions(u.Pods)
        .....
        }
    case <-syncCh:   //定时器1秒一次,说是sync
    ....
    case update := <-kl.livenessManager.Updates():  ///存活检查
    ....
    case <-housekeepingCh:  //定时器2秒一次,清理的 pod
}

HandlePodAddtions 处理pod的新增事件

func (kl *Kubelet) HandlePodAdditions(pods []*v1.Pod) {
    sort.Sort(sliceutils.PodsByCreationTime(pods))  //将pods按照创建日期排列,保证最先创建的 pod 会最先被处理
    for _, pod := range pods {

            // 把 pod 加入到 podManager 中。statusManager,volumeManager,runtimeManager都依赖于这个podManager
            kl.podManager.AddPod(pod)

        //处理静态pod,实际上内部同样是调用了kl.dispatchWork,这里主要跳过了拒绝掉pod的判断
        if kubetypes.IsMirrorPod(pod) {
            kl.handleMirrorPod(pod, start)
            continue
        }

        if !kl.podIsTerminated(pod) {
            // Only go through the admission process if the pod is not
            // terminated.

            // We failed pods that we rejected, so activePods include all admitted
            // pods that are alive.
            activePods := kl.filterOutTerminatedPods(existingPods)

            ////验证 pod 是否能在该节点运行,如果不可以直接拒绝;
            // Check if we can admit the pod; if not, reject it.
            if ok, reason, message := kl.canAdmitPod(activePods, pod); !ok {
                kl.rejectPod(pod, reason, message)
                continue
            }
        }
        ....
        kl.dispatchWork(pod, kubetypes.SyncPodCreate, mirrorPod, start)
        .....
    }
}

UpdatePod

此处调用managePodLoop通过一个协程去执行,通过一个podUpdates的map标记是否有创建过协程,然后通过working这个map标记是否有运行,没有运行的往通道里面传递,让managePodLoop得以执行

func (p *podWorkers) UpdatePod(options *UpdatePodOptions) {
    var podUpdates chan UpdatePodOptions
    if podUpdates, exists = p.podUpdates[uid]; !exists {
        p.podUpdates[uid] = podUpdates
        go func() {
            defer runtime.HandleCrash()
            p.managePodLoop(podUpdates)
        }()
    }
    if !p.isWorking[pod.UID] {
        p.isWorking[pod.UID] = true
        podUpdates <- *options
    } else {
        ...
    }
    ....
}

managePodLoop

到达syncPodFn方法调用,他是podWorkers的一个字段,在构造podWorkers的时候传入,实际就是kubelet.syncPod方法

func (p *podWorkers) managePodLoop(podUpdates <-chan UpdatePodOptions) {
    ...
            err = p.syncPodFn(syncPodOptions{
                mirrorPod:      update.MirrorPod,
                pod:            update.Pod,
                podStatus:      status,
                killPodOptions: update.KillPodOptions,
                updateType:     update.UpdateType,
            })
    ...
}

Pod sync(Kubelet.syncPod)

1 如果是 pod 创建事件,会记录一些 pod latency 相关的 metrics;

2 生成一个 v1.PodStatus 对象,Pod的状态包括这些 Pending Running Succeeded Failed Unknown

3 PodStatus 生成之后,将发送给 Pod status manager

4 运行一系列 admission handlers,确保 pod 有正确的安全权限

5 kubelet 将为这个 pod 创建 cgroups。

6 创建容器目录 /var/run/kubelet/pods/podid volume $poddir/volumes plugins $poddir/plugins

7 volume manager 将 等待volumes attach 完成

8 从 apiserver 获取 Spec.ImagePullSecrets 中指定的 secrets,注入容器

9 容器运行时(runtime)创建容器

由于代码篇幅较长,这里就只粘出关键的方法或函数调用,代码位于/pkg/kubelet/kubelet.go

func (kl *Kubelet) syncPod(o syncPodOptions) error {
    //1. 如果是 pod 创建事件,会记录一些 pod latency 相关的 metrics
    // Record pod worker start latency if being created
    // TODO: make pod workers record their own latencies
    if updateType == kubetypes.SyncPodCreate {
        if !firstSeenTime.IsZero() {
            // This is the first time we are syncing the pod. Record the latency
            // since kubelet first saw the pod if firstSeenTime is set.
            metrics.PodWorkerStartDuration.Observe(metrics.SinceInSeconds(firstSeenTime))
        } else {
            klog.V(3).Infof("First seen time not recorded for pod %q", pod.UID)
        }
    }

    //2. 生成一个 v1.PodStatus 对象
    apiPodStatus := kl.generateAPIPodStatus(pod, podStatus)
    //3.1. 生成PodStatus
    apiPodStatus := kl.generateAPIPodStatus(pod, podStatus)
    //4. 运行一系列 admission handlers,确保 pod 有正确的安全权限
    runnable := kl.canRunPod(pod)
    ....
    //3.2. PodStatus 生成之后,将发送给 Pod status manager
    kl.statusManager.SetPodStatus(pod, apiPodStatus)
    //5. kubelet 将为这个 pod 创建 cgroups
    if !kl.podIsTerminated(pod) {
        if !(podKilled && pod.Spec.RestartPolicy == v1.RestartPolicyNever) {
            if !pcm.Exists(pod) {
                if err := kl.containerManager.UpdateQOSCgroups(); err != nil {
                    klog.V(2).Infof("Failed to update QoS cgroups while syncing pod: %v", err)
                }
                if err := pcm.EnsureExists(pod); err != nil {
                    kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToCreatePodContainer, "unable to ensure pod container exists: %v", err)
                    return fmt.Errorf("failed to ensure that the pod: %v cgroups exist and are correctly applied: %v", pod.UID, err)
                }
            }
        }
    }

    //6 创建容器目录
    // Make data directories for the pod
    if err := kl.makePodDataDirs(pod); err != nil {
        kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedToMakePodDataDirectories, "error making pod data directories: %v", err)
        klog.Errorf("Unable to make pod data directories for pod %q: %v", format.Pod(pod), err)
        return err
    }

    // Volume manager will not mount volumes for terminated pods
    if !kl.podIsTerminated(pod) {
        //7 volume manager 将 等待volumes attach 完成
        //等待挂载,但是挂载不在这里执行
        // Wait for volumes to attach/mount
        if err := kl.volumeManager.WaitForAttachAndMount(pod); err != nil {
            kl.recorder.Eventf(pod, v1.EventTypeWarning, events.FailedMountVolume, "Unable to attach or mount volumes: %v", err)
            klog.Errorf("Unable to attach or mount volumes for pod %q: %v; skipping pod", format.Pod(pod), err)
            return err
        }
    }

    //8 从 apiserver 获取 Spec.ImagePullSecrets 中指定的 secrets,注入容器
    //部分pod会有ImagePullSecrets,用于登录镜像库拉镜像
    // Fetch the pull secrets for the pod
    pullSecrets := kl.getPullSecretsForPod(pod)

    //9 容器运行时(runtime)创建容器
    // Call the container runtime's SyncPod callback
    result := kl.containerRuntime.SyncPod(pod, podStatus, pullSecrets, kl.backOff)

}

运行时创建容器(kubeGenericRuntimeManager.SyncPod)

1 计算sandbox和container变化

2 如果sandbox变更了就要把pod kill了

3 kill掉pod中没有运行的container

4 要创建sandbox的就创建

5 创建临时容器

6 创建init容器

7 创建业务容器

代码位于/pkg/kubelet/kuberuntime/kuberuntime_manager.go

func (m *kubeGenericRuntimeManager) SyncPod(pod *v1.Pod, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, backOff *flowcontrol.Backoff) (result kubecontainer.PodSyncResult) {
    // Step 1: Compute sandbox and container changes.
    podContainerChanges := m.computePodActions(pod, podStatus)
    // Step 2: Kill the pod if the sandbox has changed.
    if podContainerChanges.KillPod {
        killResult := m.killPodWithSyncResult(pod, kubecontainer.ConvertPodStatusToRunningPod(m.runtimeName, podStatus), nil)
    } else {
        // Step 3: kill any running containers in this pod which are not to keep.
        for containerID, containerInfo := range podContainerChanges.ContainersToKill {
            if err := m.killContainer(pod, containerID, containerInfo.name, containerInfo.message, nil); err != nil {
            }
        }
    }
    // Step 4: Create a sandbox for the pod if necessary.
    podSandboxID := podContainerChanges.SandboxID
    if podContainerChanges.CreateSandbox {
        podSandboxID, msg, err = m.createPodSandbox(pod, podContainerChanges.Attempt)
    }
    // Step 5: start ephemeral containers
    if utilfeature.DefaultFeatureGate.Enabled(features.EphemeralContainers) {
        for _, idx := range podContainerChanges.EphemeralContainersToStart {
            start("ephemeral container", ephemeralContainerStartSpec(&pod.Spec.EphemeralContainers[idx]))
        }
    }
    // Step 6: start the init container.
    if container := podContainerChanges.NextInitContainerToStart; container != nil {
        // Start the next init container.
        if err := start("init container", containerStartSpec(container)); err != nil {
            return
        }
    }

    // Step 7: start containers in podContainerChanges.ContainersToStart.
    for _, idx := range podContainerChanges.ContainersToStart {
        start("container", containerStartSpec(&pod.Spec.Containers[idx]))
    }
    return
}
创建sandbox

1 拉sandbox镜像

2 创建sandbox 容器

3 创建sandbox的checkpoint

4 启动sandbox容器,如果失败交由kubelet GC

5 hostNetwork就可以返回,否则让CNI编织网络

这个过程会涉及到几层的调用链,才会找到最终创建sandbox的代码,从kubeGenericRuntimeManager.SyncPod起

m.createPodSandbox    /pkg/kubelet/kuberuntime/kuberuntime_manager.go
|--m.runtimeService.RunPodSandbox    /pkg/kubelet/kuberuntime/kuberuntime_sandbox.go
    |--r.runtimeClient.RunPodSandbox    runtimeService.RunPodSandbox的实现类是remoteRuntimeService   /pkg/kubelet/cri/remote/remote_runtime.go
        |--dockerService.RunPodSandbox  /pkg/kubelet/dockershim/docker_sandbox/go

dockerService.RunPodSandbox方法的简略如下

func (ds *dockerService) RunPodSandbox(ctx context.Context, r *runtimeapi.RunPodSandboxRequest) (*runtimeapi.RunPodSandboxResponse, error) {
    // Step 1: Pull the image for the sandbox.
    if err := ensureSandboxImageExists(ds.client, image); err != nil {
        return nil, err
    }
    // Step 2: Create the sandbox container.
    createConfig, err := ds.makeSandboxDockerConfig(config, image)
    createResp, err := ds.client.CreateContainer(*createConfig)
    // Step 3: Create Sandbox Checkpoint.
    if err = ds.checkpointManager.CreateCheckpoint(createResp.ID, constructPodSandboxCheckpoint(config)); err != nil {
        return nil, err
    }
    // Step 4: Start the sandbox container.
    err = ds.client.StartContainer(createResp.ID)
    // Step 5: Setup networking for the sandbox.
    if config.GetLinux().GetSecurityContext().GetNamespaceOptions().GetNetwork() == runtimeapi.NamespaceMode_NODE {
        return resp, nil
    }
    err = ds.network.SetUpPod(config.GetMetadata().Namespace, config.GetMetadata().Name, cID, config.Annotations, networkOptions)
}
CNI编织网路

kubelet使用 /etc/cni/net.d的配置文件启动 /opt/cni/bin 二进制的CNI 插件

CNI 插件创建veth,master到指定设备,必要是通过unix socket与daemonset里面的CNI容器获取目标pod的信息

创建临时容器、 init 容器及业务容器

1 拉镜像

2 创建容器

3 启动容器

4 执行post start hook

三种容器都是调用了kubeGenericRuntimeManager.SyncPod内定义的局部函数,只是因为容器类型不一样而入参不一样而已

在局部函数调用kubeGenericRuntimeManager.startContainer方法简略如下,代码路径/pkg/kubelet/kuberuntime/kuberuntime_container.go

func (m *kubeGenericRuntimeManager) startContainer(podSandboxID string, podSandboxConfig *runtimeapi.PodSandboxConfig, spec *startSpec, pod *v1.Pod, podStatus *kubecontainer.PodStatus, pullSecrets []v1.Secret, podIP string, podIPs []string) (string, error) {
    // Step 1: pull the image.
    imageRef, msg, err := m.imagePuller.EnsureImageExists(pod, container, pullSecrets, podSandboxConfig)
    // Step 2: create the container.
    containerID, err := m.runtimeService.CreateContainer(podSandboxID, containerConfig, podSandboxConfig)
    // Step 3: start the container.
    err = m.runtimeService.StartContainer(containerID)
    // Step 4: execute the post start hook.
    if container.Lifecycle != nil && container.Lifecycle.PostStart != nil {
        msg, handlerErr := m.runner.Run(kubeContainerID, pod, container, container.Lifecycle.PostStart)
    }
}

小结

本篇从kubelet的主循环开始,讲述了pod的启动过程,包括状态更新,分配cgroup,创建容器目录,等待volume挂载,注入imagepull secret,创建sandbox,调用cni编织网络,启动临时容器,init容器,业务容器,执行postStart生命周期钩子。

参考文章

万字长文:K8s 创建 pod 时,背后到底发生了什么?

kubelet 创建 pod 的流程

Pod 的创建

kubernetes/k8s CRI分析-kubelet创建pod分析