scp -r hello.txt root@hadoop103:/user/atguigu/hello.txt // 推 push
scp -r root@hadoop103:/user/atguigu/hello.txt hello.txt // 拉 pull
scp -r root@hadoop103:/user/atguigu/hello.txt root@hadoop104:/user/atguigu //是通过本地主机中转实现两个远程主机的文件复制;如果在两个远程主机之间ssh没有配置的情况下可以使用该方式。
[atguigu@hadoop102 hadoop-3.1.3]$ bin/hadoop distcp
hdfs://hadoop102:9820/user/atguigu/hello.txt
hdfs://hadoop105:9820/user/atguigu/hello.txt
HDFS存储小文件弊端
每个文件均按块存储,每个块的元数据存储在NameNode的内存中,因此HDFS存储小文件会非常低效。因为大量的小文件会耗尽NameNode中的大部分内存。但注意,存储小文件所需要的磁盘容量和数据块的大小无关。例如,一个1MB的文件设置为128MB的块存储,实际使用的是1MB的磁盘空间,而不是128MB
解决存储小文件办法之一
HDFS存档文件或HAR文件,是一个更高效的文件存档工具,它将文件存入HDFS块,在减少NameNode内存使用的同时,允许对文件进行透明的访问。具体说来,HDFS存档文件对内还是一个一个独立文件,对NameNode而言却是一个整体,减少NameNode的内存
开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。
HDFS NameNode高可用性的初始实现为单个活动NameNode和单个备用NameNode,将edits复制到三个JournalNode。该体系结构能够容忍系统中一个NN或一个JN的故障。
但是,某些部署需要更高程度的容错能力。Hadoop3.x允许用户运行多个备用NameNode。例如,通过配置三个NameNode和五个JournalNode,群集能够容忍两个节点而不是一个节点的故障。
HDFS中的默认3副本方案在存储空间和其他资源(例如,网络带宽)中具有200%的开销。但是,对于I / O活动相对较低暖和冷数据集,在正常操作期间很少访问其他块副本,但仍会消耗与第一个副本相同的资源量。
纠删码(Erasure Coding)能够在不到50% 的数据冗余情况下提供和3副本相同的容错能力,因此,使用纠删码作为副本机制的改进是自然而然的。
查看集群支持的纠删码策略:hdfs ec -listPolicies
手机扫一扫
移动阅读更方便
你可能感兴趣的文章