Matplotlib 图表绘制工具学习笔记
阅读原文时间:2023年07月09日阅读:5

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

arr1 = np.random.rand(10)#一维数组
arr2 = np.random.rand(10, 2)#二维数组

plt.plot(arr2)

plot可以没有横坐标,纵坐标为数组中的数据,横坐标对应着索引

plt.show()

一维数组就是一条线,二维数组就是两条线

魔法方法

%matplotlib inline

Spell it as two words, rather than three

%matplotlib notebook

df = pd.DataFrame(np.random.rand(10, 2))
fig = df.plot(figsize=(5, 5))

pandas内置了plot

df是二维数据所以图中有两条线

fig = df.plot(figsize=(3, 3))
plt.title("title")
plt.xlabel("x")
plt.ylabel("y")

plt跟在图的后面就能发挥作用,而不在于图是由pandas画的还是有matplotlib

其他命令

plt.xlim([0, 10])
plt.ylim([0, 1.0])
plt.xticks(range(10))#刻度
plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0])

x = np.linspace(-np.pi, np.pi, 256, endpoint=True)
c, s = np.cos(x), np.sin(x)
plt.plot(x, c)
plt.plot(x, s)
plt.grid()

plt.plot([i**2 for i in range(100)],
linestyle="--")

# marker参数
s = pd.Series(np.random.randn(100).cumsum())

randn有符号的-1-1之间的小数,模拟股价的走势

s.plot(marker="o")

s.plot(marker="x")

# color参数
plt.hist(np.random.randn(100), color="r")

# 风格
import matplotlib.style as psl
psl.available
psl.use("bmh")

# 图标注释
s.plot()#画图
plt.text(50, 1, "(1,1)")

注释 横坐标,纵坐标,字符串

# 图标输出
s.plot()
plt.savefig(r"C:\Users\Mr_wa\Desktop\pic.png")

注意前面的r,否则报错

# 子图

创建图

fig1 = plt.figure(num=1, figsize=(4, 2))
plt.plot(np.random.rand(50).cumsum(), "k--")

fig2 = plt.figure(num=2, figsize=(4, 2))
plt.plot(50 - np.random.rand(50).cumsum(), "k--")

fig1 = plt.figure(num=1, figsize=(4, 2))
plt.plot(np.random.rand(50).cumsum(), "k--")
fig2 = plt.figure(num=1, figsize=(4, 2))
plt.plot(50 - np.random.rand(50).cumsum(), "k--")

# 创建子图 方式一

fig = plt.figure(figsize=(6, 4))

新建2*2表格,(2,2,1)表示2*2 第一个位置

先占位,后画图

ax1 = fig.add_subplot(2, 2, 1)
ax1.plot(np.random.rand(50).cumsum(), "k--")
ax1.plot(np.random.rand(50).cumsum(), "b--")

第二个位置

ax2 = fig.add_subplot(2, 2, 2)
ax2.hist(np.random.rand(50), alpha=0.5)

第三个位置

ax3 = fig.add_subplot(2, 2, 3)
df = pd.DataFrame(np.random.rand(10, 4), columns=["a","b","c","d"])
ax3.plot(df, alpha=0.5, marker=".")

# 创建子图 方式二

同时新建画布和矩阵

fig,axes = plt.subplots(2, 3, figsize=(10, 4))

在第一行第二个画布上画图

ax = axes[0, 1]
ax.plot(s)

axes[0, 2].plot(s)

# 新建时间序列
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
ts = ts.cumsum()

ts.plot(kind="line",
label="hehe",
color="r",
alpha=0.4,
use_index=True,
rot=45,
grid=True,
ylim=[-50, 50],
yticks=list(range(-50, 50, 10)),
figsize=(8, 4),
title="test",
)

df = pd.DataFrame(np.random.randn(1000, 4))
df = df.cumsum()

df.plot(kind="line",
label="hehe",
color="r",
alpha=0.4,
use_index=True,
rot=45,
grid=True,
ylim=[-50, 50],
yticks=list(range(-50, 50, 10)),
figsize=(8, 4),
title="test",)

# 柱状图

fig,axes = plt.subplots(3, 1, figsize=(10, 5))

s = pd.Series(np.random.rand(10))
df = pd.DataFrame(np.random.rand(10, 4))

单系列柱状图

s.plot(kind="bar", ax=axes[0])

多系列柱状图

df.plot(kind="bar", ax=axes[1])

多系列堆叠图

df.plot(kind="bar", stacked=True, ax=axes[2])

# 柱状图的第二种画法plt.bar()

plt.figure(figsize=(10, 4))
x = np.arange(10)
y1 = np.random.rand(10)
y2 = -np.random.rand(10)

plt.bar(x, y1, width=1, facecolor="yellowgreen", edgecolor="white", yerr=y1 * 0.1)
plt.bar(x, y2, width=1, facecolor="lightskyblue", edgecolor="white", yerr=y2 * 0.1)

# 面积图、填图、饼图

新建画布和矩阵

fig, axes = plt.subplots(2,1,figsize=(8,6))

准备数据

df1 = pd.DataFrame(np.random.rand(10,4), columns=["a","b","c","d"])
df2 = pd.DataFrame(np.random.randn(10,4), columns=["a","b","c","d"])

画图方式1——pandas

df1.plot.area(colormap="Greens_r",alpha=0.5,ax=axes[0]) # 数据df1在第一个位置画图
df2.plot.area(stacked=False,colormap="Set2",alpha=0.5,ax=axes[1]) # 数据df2在第二个位置画图

# 直方图+密度图

s = pd.Series(np.random.randn(1000))

s.hist(bins=20,
histtype="bar",
align="mid",
orientation="vertical",
alpha=0.5,
)

bins 决定了箱子的数量

histtype=step/stepfilled/bar

orientation=vertical/horizontal

密度图

s.plot(kind="kde", style="k--",)

# 散点图

plt.figure(figsize=(8,6))

x = np.random.randn(1000)
y = np.random.randn(1000)

plt.scatter(x,y,marker=".",
s = np.random.randn(1000)*100,
cmap = "Reds")

# 极坐标

创建数据

s = pd.Series(np.arange(20))
theta = np.arange(0,2*np.pi,0.02)

新建画布

fig = plt.figure(figsize=(8,4))

创建矩阵

ax1 = plt.subplot(1,2,1,projection="polar")
ax2 = plt.subplot(1,2,2)

画图

ax1.plot(theta, theta*3,linestyle="--",lw=1)
ax1.plot(s, linestyle="--",lw=1)

ax2.plot(theta, theta*3, linestyle="--",lw=1)
ax2.plot(s)

# 箱型图

创建画布和矩阵

fig, axes = plt.subplots(2,1,figsize=(10,6))

设置颜色

color = dict(boxes="DarkGreen", whiskers="DarkOrange", medians="DarkBlue",caps="Gray")

数据

df

画图

df.plot.box(ax = axes[0],color=color)

# 箱型图的第二种画法

plt.figure(figsize=(10,4))

df.boxplot()

# 表格样式创建 DataFrame.style

按元素处理样式:style.applymap()

def color_neg_red(val):
if val < 0.5:
color = "red"
else:
color = "black"
return("color:%s" %color)

改变表格的样式:使小于0.5的数字为红色,大于0.5的为黑色

df.style.applymap(color_neg_red)