flink01--------1.flink简介 2.flink安装 3. flink提交任务的2种方式 4. 4flink的快速入门 5.source 6 常用算子(keyBy,max/min,maxBy/minBy,connect,union,split+select)
阅读原文时间:2023年07月12日阅读:1

1. flink简介

1.1 什么是flink

Apache Flink是一个分布式大数据处理引擎,可以对有限数据流(如离线数据)和无限流数据及逆行有状态计算(不太懂)。可以部署在各种集群环境,对各种大小的数据规模进行快速计算。

1.2 flink的架构体系

  具体见文档

2. flink的安装

  • 修改flink-conf.yaml

jobmanager.rpc.address: feng05 // 注意,此处冒号后需要空一格,并且参数要顶行写(yaml文件格式的规定,否则会报错)
taskmanager.numberOfTaskSlots: 2

  • 将配置好的Flink安装包拷⻉贝到其他节点

for i in {4..7}; do scp -r flink-1.10.1/ feng05:$PWD; done

  • 启动集群(standalone模式)

bin/start-cluster.sh

  • 查看Java进程(jps)

StandaloneSessionClusterEntrypoint (JobManager,即Master)
TaskManagerRunner (TaskManager,即Worker)

  • 访问JobManager的web管理界面

feng05:8081

3. flink提交任务的两种方式

第一种:通过web页面提交

第二种:通过命令行提交

./flink run -m feng05:8081 -p 4 -c cn._51doit.flink.day1.HelloFlink /root/flink-in-action-1.0-SNAPSHOT.jar --hostname feng05 --port 8888

4.flink快速入门

4.0 创建flink工程

  • java形式(window上)

mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.10.1 -DgroupId=cn._51doit.flink -DartifactId=flink-java -Dversion=1.0 -Dpackage=cn._51doit.flink -DinteractiveMode=false

  • scala形式

      同理

  • 也可以直接在IDEA上创建相应的maven项目,导入pom文件(这里jar的版本不好弄,所以直接用上面的命令更方便)

4.1 wordCount案例

StreamWordCount(匿名内部类的形式)

package cn._51doit.flink.day01;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class StreamWordCount {
public static void main(String[] args) throws Exception {
// 创建一个Stream计算执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 调用Source创建DataStream
DataStreamSource lines = env.socketTextStream(args[0], Integer.parseInt(args[1]));
int parallelism = lines.getParallelism();

// DataStream words = lines.flatMap(new FlatMapFunction() {
// @Override
// public void flatMap(String line, Collector out) throws Exception {
// String[] words = line.split(" ");
// for (String word : words) {
// out.collect(word);
// }
// }
// });
// SingleOutputStreamOperator> wordAndOne = words.map(new MapFunction>() {
// @Override
// public Tuple2 map(String word) throws Exception {
// return Tuple2.of(word, 1);
// }
// });
SingleOutputStreamOperator> wordAndOne = lines.flatMap(new FlatMapFunction>() {
@Override
public void flatMap(String line, Collector> out) throws Exception {

            String\[\] words = line.split(" ");  
            for (String word : words) {  
                out.collect(Tuple2.of(word, 1));  
            }  
        }  
    });  
    KeyedStream<Tuple2<String, Integer>, Tuple> keyed = wordAndOne.keyBy(0);  
    SingleOutputStreamOperator<Tuple2<String, Integer>> summed = keyed.sum(1);  
    //Transformation 结束  
    //调用Sink  
    summed.print();  
    //执行程序  
    env.execute("StreamWordCount");  
}  

}

LambdaStreamWordCount(lambda的形式)

package cn._51doit.flink.day01;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

import java.util.Arrays;

public class LambdaStreamWordCount {
public static void main(String[] args) throws Exception {
// 创建一个stream计算的执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource lines = env.socketTextStream("feng05", 8888);
// SingleOutputStreamOperator words = lines
// .flatMap((String line, Collector out) -> Arrays.asList(line.split(" ")).forEach(out::collect))
// .returns(Types.STRING);
//
// SingleOutputStreamOperator> wordAndOne = words
// .map(word -> Tuple2.of(word, 1))
// .returns(Types.TUPLE(Types.STRING, Types.INT));
SingleOutputStreamOperator> wordAndOne = lines.flatMap((String line, Collector> out)->{
Arrays.stream(line.split(" ")).forEach(w -> out.collect(Tuple2.of(w, 1)));
}).returns(Types.TUPLE(Types.STRING, Types.INT));
SingleOutputStreamOperator> result = wordAndOne.keyBy(0).sum(1);
result.print();
env.execute();
}
}

自己运行时遇到的小问题

5.source

  • 单并行source 

      只有一个source来产生数据,如fromCollection、socketTextStream

  • 双并行source

      有多个source实例来产生数据

6 常用算子

6.1 keyBy

 

  • 分组的对象是元组中的数据,可以直接指定角标,而且可以是多个

package cn._51doit.flink.day01;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KeyByDemo1 {

public static void main(String\[\] args) throws Exception{

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

    //辽宁省,沈阳市,1000  
    SingleOutputStreamOperator<Tuple3<String, String, Double>> provinceCityAndMoney = lines.map(new MapFunction<String, Tuple3<String, String, Double>>() {

        @Override  
        public Tuple3<String, String, Double> map(String line) throws Exception {  
            String\[\] fields = line.split(",");  
            String province = fields\[0\];  
            String city = fields\[1\];  
            double money = Double.parseDouble(fields\[2\]);  
            return Tuple3.of(province, city, money);  
        }  
    });

    KeyedStream<Tuple3<String, String, Double>, Tuple> keyed = provinceCityAndMoney.keyBy(0, 1);

    SingleOutputStreamOperator<Tuple3<String, String, Double>> summed = keyed.sum(2);

    summed.print();

    env.execute();

}  

}

  • 分组的对象不是元组中的元素,比如javabean中定义的字段,这个时候只能按照一个字段分组

package cn._51doit.flink.day01;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KeyByDemo2 {

public static void main(String\[\] args) throws Exception{

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

    //辽宁省,沈阳市,1000

    SingleOutputStreamOperator<OrderBean> provinceCityAndMoney = lines.map(new MapFunction<String, OrderBean>() {

        @Override  
        public OrderBean map(String line) throws Exception {  
            String\[\] fields = line.split(",");  
            String province = fields\[0\];  
            String city = fields\[1\];  
            double money = Double.parseDouble(fields\[2\]);  
            return new OrderBean(province, city, money);  
        }  
    });

    KeyedStream<OrderBean, Tuple> keyed = provinceCityAndMoney.keyBy("province", "city");

    SingleOutputStreamOperator<OrderBean> res = keyed.sum("money");

    //provinceCityAndMoney.keyBy(OrderBean::getProvince) 只能按照一个字段分组

    res.print();

    env.execute();

}  

}

6.2 max和min

 min、max返回分组的字段和参与比较的数据,如果有多个字段,其他字段的返回值是第一次出现的数据。

package cn._51doit.flink.day01;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class MinMaxDemo {

public static void main(String\[\] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  
    DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

    //省份,城市,人数  
    SingleOutputStreamOperator<Tuple3<String, String, Integer>> provinceCityAmount = lines.map(line -> {  
        String\[\] fields = line.split(",");  
        String province = fields\[0\];  
        String city = fields\[1\];  
        Integer amount = Integer.parseInt(fields\[2\]);  
        return Tuple3.of(province, city, amount);  
    }).returns(Types.TUPLE(Types.STRING, Types.STRING, Types.INT));

    KeyedStream<Tuple3<String, String, Integer>, Tuple> keyed = provinceCityAmount.keyBy(0);

    //min、max返回分组的字段和参与比较的数据,如果有多个字段,其他字段的返回值是第一次出现的数据。  
    SingleOutputStreamOperator<Tuple3<String, String, Integer>> max = keyed.max(2);

    max.print();

    env.execute();  
}

}

比如

江西,鹰潭,1000 //先输入此数据,max后得到本身
江西,南昌,2000  //输入该数据,max后得到的是江西,鹰潭,2000 并不能得到南昌字段

解决办法=====>使用maxBy和minBy

6.3 maxBy和minBy

package cn._51doit.flink.day01;

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class MinByMaxByDemo {

public static void main(String\[\] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  
    DataStreamSource<String> lines = env.socketTextStream("localhost", 8888);

    //省份,城市,人数  
    江西,鹰潭,1000  
    江西,南昌,2000  
    SingleOutputStreamOperator<Tuple3<String, String, Integer>> provinceCityAmount = lines.map(line -> {  
        String\[\] fields = line.split(",");  
        String province = fields\[0\];  
        String city = fields\[1\];  
        Integer amount = Integer.parseInt(fields\[2\]);  
        return Tuple3.of(province, city, amount);  
    }).returns(Types.TUPLE(Types.STRING, Types.STRING, Types.INT));

    KeyedStream<Tuple3<String, String, Integer>, Tuple> keyed = provinceCityAmount.keyBy(0);

    //minBy、maxBy返回最大值或最小值数据本身(全部字段都返回)。  
    SingleOutputStreamOperator<Tuple3<String, String, Integer>> max = keyed.maxBy(2);

    max.print();

    env.execute();  
}

}

这种形式又会出现另外一个难点,就是当按照key进行分组后,比较大小的值一样时,其它字段返回的值又是第一次出现的数据,解决办法===>加一个参数(可以从源码中得出此结论),如下:加上false

SingleOutputStreamOperator> max = keyed.maxBy(2, false);

此时其它字段返回的值就是最后依次出现的字段了。

6.4 connect

  DataStream转换成ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了同一个流中,内部依然保持各自的数据和形式不不发生任何变化,两个流相互独?立。

ConnectDemo

package cn._51doit.flink.day02;

import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;

public class ConnectDemo2 {

public static void main(String\[\] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStreamSource<String> words = env.fromElements("a", "b", "c", "d", "e");

    DataStreamSource<Integer> nums = env.fromElements(1, 2, 3, 4, 5, 6, 7, 8);

    ConnectedStreams<Integer, String> connected = nums.connect(words);

    SingleOutputStreamOperator<String> res = connected.map(new CoMapFunction<Integer, String, String>() {  
        @Override  
        public String map1(Integer value) throws Exception {  
            return value \* 10 + "";  
        }

        @Override  
        public String map2(String value) throws Exception {  
            return value.toUpperCase();  
        }  
    });

    res.print();

    env.execute();

}  

}

6.5 union

  DataStream转换成DataStream,对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream

  注意:unoin要求两个流的数据类型必须一致,并且不去重

UnionDemo

package cn._51doit.flink.day02;

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class UnionDemo {

public static void main(String\[\] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStreamSource<Integer> num1 = env.fromElements(1, 2, 3, 4, 5, 6, 7, 8, 9);

    DataStreamSource<Integer> num2 = env.fromElements( 10, 11, 12);

    //unoin要求两个流的数据类型必须一致  
    DataStream<Integer> union = num1.union(num2);

    union.print();

    env.execute();

}  

}

6.6 split+select

  DataStream转换成SplitStrram,根据某些特征把一个DataStream拆分成两个或者多个DataStream。split一般是结合select使用的,若是将一个数据划分成多个类,split+select的效率会更高,若只是筛选出一个类型的数据,则用filter效率高些。