JavaCV人脸识别三部曲之一:视频中的人脸保存为图片
阅读原文时间:2023年08月09日阅读:5

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos

关于人脸识别

  • 本文是《JavaCV人脸识别三部曲》的第一篇,在《JavaCV的摄像头实战之八:人脸检测》一文中,实现了检测人脸并用方框标注出来,但仅框出人脸作用不大,最好是识别出此人的身份,这样就能做很多事情了,例如签到、告警等,这就是接下来咱们要挑战的人脸识别

  • 人脸识别涉及到两个步骤:训练和识别,接下来简单说明解释一下

  • 先看什么是训练,如下图,用两位天王的六张照片来训练,一共两个类别,训练完成后得到模型文件faceRecognizer.xml:

  • 训练成功后, 我们拿一张新的照片给模型去识别,得到的结果是训练时的类别,如此识别完成,我们已确定了新照片的身份:

  • 下面用流程图将训练和识别说得更详细一些:

关于《JavaCV人脸识别三部曲》

《JavaCV人脸识别三部曲》一共三篇文章,内容如下:

  1. 《视频中的人脸保存为图片》:本篇介绍如何通过JavaCV将摄像头中的每个人脸都检测出来,并且把每个人脸保存为图片,这种方法可以让我们快速获取大量人脸照片用于训练
  2. 《训练》:讲述如何用分类好的照片去训练模型
  3. 《识别和预览》:拿到训练好的模型,去识别视频中每一帧的人脸,把结果标注到图片上预览
  • 整个三部曲也是《JavaCV的摄像头实战》系列的一部分,分别是《JavaCV的摄像头实战》系列的的第九、第十、第十一篇

本篇概览

  • 本篇要做的事情就是把训练用的照片准备好
  • 您可能会疑惑:我自己去找一些照片不就行了吗?去网上搜、去相册搜、去拍照不都可以吗?没错,只要找到您想识别的人脸即可,而本篇介绍的是另一种方法:借助摄像头检测人脸,然后将人脸大小的照片保存在硬盘,用这些照片来训练,实测多张照片训练处的模型在检测新照片时效果更好
  • 具体做法如下:
  1. 写个程序,对摄像头的照片做人脸检测,每个检测到的人脸,都作一张图片保存,注意不是摄像头视频帧的完整图片,而是检测出每张人脸,把这个人脸的矩形作为图片保存,而且保存的是灰度图片,不是彩色图片(训练和检测只需要灰度图片)
  2. 然后找个没人的地方运行程序,一个人对着摄像头,开始……搔首弄姿,各种光线明暗、各种角度、各种表情都用上,作为图片保存
  • 用这些图片训练出的模型,由于覆盖了各种亮度、角度、表情,最终的识别效果会更好
  • 接下来我们就来写这段程序吧

源码下载

名称

链接

备注

项目主页

https://github.com/zq2599/blog_demos

该项目在GitHub上的主页

git仓库地址(https)

https://github.com/zq2599/blog_demos.git

该项目源码的仓库地址,https协议

git仓库地址(ssh)

git@github.com:zq2599/blog_demos.git

该项目源码的仓库地址,ssh协议

  • 这个git项目中有多个文件夹,本篇的源码在javacv-tutorials文件夹下,如下图红框所示:

  • javacv-tutorials里面有多个子工程,《JavaCV的摄像头实战》系列的代码在simple-grab-push工程下:

编码:检测服务

  • 先定义一个检测有关的接口DetectService.java,如下,主要是定义了三个方法init、convert、releaseOutputResource,其中init用于初始化检测服务,convert负责处理单个帧(本篇就是检测出人脸、把人脸照片保存在硬盘),releaseOutputResource在结束的时候被执行,用于释放资源,另外还有个静态方法buildGrayImage,很简单,生成灰度图片对应的Mat对象:

    package com.bolingcavalry.grabpush.extend;

    import com.bolingcavalry.grabpush.Constants;
    import org.bytedeco.javacv.Frame;
    import org.bytedeco.javacv.OpenCVFrameConverter;
    import org.bytedeco.opencv.opencv_core.; import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier; import static org.bytedeco.opencv.global.opencv_core.CV_8UC1; import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite; import static org.bytedeco.opencv.global.opencv_imgproc.;

    /**

    • @author willzhao

    • @version 1.0

    • @description 检测工具的通用接口

    • @date 2021/12/5 10:57
      */
      public interface DetectService {

      /**

      • 根据传入的MAT构造相同尺寸的MAT,存放灰度图片用于以后的检测
      • @param src 原始图片的MAT对象
      • @return 相同尺寸的灰度图片的MAT对象
        */
        static Mat buildGrayImage(Mat src) {
        return new Mat(src.rows(), src.cols(), CV_8UC1);
        }

      /**

      • 初始化操作,例如模型下载
      • @throws Exception
        */
        void init() throws Exception;

      /**

      • 得到原始帧,做识别,添加框选
      • @param frame
      • @return
        */
        Frame convert(Frame frame);

      /**

      • 释放资源
        */
        void releaseOutputResource();
        }
  • 然后就是DetectService的实现类DetectAndSaveService.java,完整代码如下,有几处要注意的地方稍后提到:

    package com.bolingcavalry.grabpush.extend;

    import com.bolingcavalry.grabpush.Constants;
    import lombok.extern.slf4j.Slf4j;
    import org.bytedeco.javacpp.Loader;
    import org.bytedeco.javacv.Frame;
    import org.bytedeco.javacv.OpenCVFrameConverter;
    import org.bytedeco.opencv.opencv_core.; import org.bytedeco.opencv.opencv_objdetect.CascadeClassifier; import java.io.File; import java.net.URL; import java.text.SimpleDateFormat; import java.util.Date; import java.util.concurrent.atomic.AtomicInteger; import static org.bytedeco.opencv.global.opencv_imgcodecs.imwrite; import static org.bytedeco.opencv.global.opencv_imgproc.;

    /**

    • @author willzhao

    • @version 1.0

    • @description 检测人脸并保存到硬盘的服务

    • @date 2021/12/3 8:09
      */
      @Slf4j
      public class DetectAndSaveService implements DetectService {

      /**

      • 每一帧原始图片的对象
        */
        private Mat grabbedImage = null;

      /**

      • 原始图片对应的灰度图片对象
        */
        private Mat grayImage = null;

      /**

      • 分类器
        */
        private CascadeClassifier classifier;

      /**

      • 转换器
        */
        private OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();

      /**

      • 模型文件的下载地址
        */
        private String modelFileUrl;

      /**

      • 存放人脸图片的位置
        */
        private String basePath;

      /**

      • 记录图片总数
        */
        private final AtomicInteger num = new AtomicInteger();

      /**

      • 训练的图片尺寸
        */
        Size size = new Size(Constants.RESIZE_WIDTH, Constants.RESIZE_HEIGHT);

      /**

      • 构造方法,在此指定模型文件的下载地址

      • @param modelFileUrl 人脸检测模型地址

      • @param basePath 检测出的人脸小图在硬盘上的存放地址
        */
        public DetectAndSaveService(String modelFileUrl, String basePath) {
        this.modelFileUrl = modelFileUrl;

        // 图片保存在硬盘的位置,注意文件名的固定前缀是当前的年月日时分秒
        this.basePath = basePath
        + new SimpleDateFormat("yyyyMMddHHmmss").format(new Date())
        + "-";
        }

      /**

      • 音频采样对象的初始化

      • @throws Exception
        */
        @Override
        public void init() throws Exception {
        // 下载模型文件
        URL url = new URL(modelFileUrl);

        File file = Loader.cacheResource(url);

        // 模型文件下载后的完整地址
        String classifierName = file.getAbsolutePath();

        // 根据模型文件实例化分类器
        classifier = new CascadeClassifier(classifierName);

        if (classifier == null) {
        log.error("Error loading classifier file [{}]", classifierName);
        System.exit(1);
        }
        }

      @Override
      public Frame convert(Frame frame) {
      // 由帧转为Mat
      grabbedImage = converter.convert(frame);

      // 灰度Mat,用于检测
      if (null==grayImage) {
          grayImage = DetectService.buildGrayImage(grabbedImage);
      }
      
      String filePath = basePath + num.incrementAndGet();
      
      // 进行人脸识别,根据结果做处理得到预览窗口显示的帧
      return detectAndSave(classifier, converter, frame, grabbedImage, grayImage, filePath , size);

      }

      /**

      • 程序结束前,释放人脸识别的资源
        */
        @Override
        public void releaseOutputResource() {
        if (null!=grabbedImage) {
        grabbedImage.release();
        }

        if (null!=grayImage) {
        grayImage.release();
        }

        if (null==classifier) {
        classifier.close();
        }
        }

      /**
      *

      • @param classifier 分类器

      • @param converter 转换工具

      • @param rawFrame 原始帧

      • @param grabbedImage 原始图片的Mat对象

      • @param grayImage 原始图片对应的灰度图片的Mat对象

      • @param basePath 图片的基本路径

      • @param size 训练时要求的图片大小

      • @return
        */
        static Frame detectAndSave(CascadeClassifier classifier,
        OpenCVFrameConverter.ToMat converter,
        Frame rawFrame,
        Mat grabbedImage,
        Mat grayImage,
        String basePath,
        Size size) {

        // 当前图片转为灰度图片
        cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);

        // 存放检测结果的容器
        RectVector objects = new RectVector();

        // 开始检测
        classifier.detectMultiScale(grayImage, objects);

        // 检测结果总数
        long total = objects.size();

        // 如果没有检测到结果就提前返回
        if (total<1) {
        return rawFrame;
        }

        // 假设现在是一个人对着摄像头,因为此时检测的结果如果大于1,显然是检测有问题
        if (total>1) {
        return rawFrame;
        }

        Mat faceMat;

        // 如果有检测结果,就根据结果的数据构造矩形框,画在原图上
        // 前面的判断确保了此时只有一个人脸
        Rect r = objects.get(0);

        // 从完整的灰度图中取得一个矩形小图的Mat对象
        faceMat = new Mat(grayImage, r);

        // 训练时用的图片尺寸是固定的,因此这里要调整大小
        resize(faceMat, faceMat, size);

        // 图片的保存位置
        String imagePath = basePath + "." + Constants.IMG_TYPE;

        // 保存图片到硬盘
        imwrite(imagePath, faceMat);

        // 人脸的位置信息
        int x = r.x(), y = r.y(), w = r.width(), h = r.height();

        // 在人脸上画矩形
        rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);

        // 释放检测结果资源
        objects.close();

        // 将标注过的图片转为帧,返回
        return converter.convert(grabbedImage);
        }
        }

  • 上述代码有几处要注意:

  1. detectAndSave方法中,当前照片检测出的人脸数如果大于1就提前返回不做处理了,这是因为假定运行程序的时候,摄像头前面只有一个人,所以如果检测出超过一张人脸,就认为当前照片的检测不准确,就不再处理当前照片了(实际使用中发现常有检测失误的情况,例如把一个矩形盒子检测为人脸),这个提前返回的逻辑,您可以根据自己的环境去调整
  2. imwrite方法可以将Mat以图片的形式保存到硬盘
  3. 保存文件到磁盘前调用了resize方法,将图片调整为164*164大小,这是因为后面的训练和检测统一使用该尺寸
  • 现在核心代码已经写完,需要再写一些代码来使用DetectAndSaveService

编码:运行框架

  • 《JavaCV的摄像头实战之一:基础》创建的simple-grab-push工程中已经准备好了父类AbstractCameraApplication,所以本篇继续使用该工程,创建子类实现那些抽象方法即可

  • 编码前先回顾父类的基础结构,如下图,粗体是父类定义的各个方法,红色块都是需要子类来实现抽象方法,所以接下来,咱们以本地窗口预览为目标实现这三个红色方法即可:

  • 新建文件PreviewCameraWithDetectAndSave.java,这是AbstractCameraApplication的子类,其代码很简单,接下来按上图顺序依次说明

  • 先定义CanvasFrame类型的成员变量previewCanvas,这是展示视频帧的本地窗口:

    protected CanvasFrame previewCanvas

  • 把前面创建的DetectService作为成员变量,后面检测的时候会用到:

    /**
     * 检测工具接口
     */
    private DetectService detectService;
  • PreviewCameraWithDetectAndSave的构造方法,接受DetectService的实例:

    /**
     * 不同的检测工具,可以通过构造方法传入
     * @param detectService
     */
    public PreviewCameraWithDetectAndSave(DetectService detectService) {
        this.detectService = detectService;
    }
  • 然后是初始化操作,可见是previewCanvas的实例化和参数设置:

    @Override
    protected void initOutput() throws Exception {
        previewCanvas = new CanvasFrame("摄像头预览,检测人脸并保存在硬盘", CanvasFrame.getDefaultGamma() / grabber.getGamma());
        previewCanvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        previewCanvas.setAlwaysOnTop(true);
    // 检测服务的初始化操作
    detectService.init();
    }
  • 接下来是output方法,定义了拿到每一帧视频数据后做什么事情,这里调用了detectService.convert检测人脸并保存图片,然后在本地窗口显示:

    @Override
    protected void output(Frame frame) {
        // 原始帧先交给检测服务处理,这个处理包括物体检测,再将检测结果标注在原始图片上,
        // 然后转换为帧返回
        Frame detectedFrame = detectService.convert(frame);
        // 预览窗口上显示的帧是标注了检测结果的帧
        previewCanvas.showImage(detectedFrame);
    }
  • 最后是处理视频的循环结束后,程序退出前要做的事情,先关闭本地窗口,再释放检测服务的资源:

    @Override
    protected void releaseOutputResource() {
        if (null!= previewCanvas) {
            previewCanvas.dispose();
        }
    // 检测工具也要释放资源
    detectService.releaseOutputResource();
    }
  • 由于检测有些耗时,所以两帧之间的间隔时间要低于普通预览:

    @Override
    protected int getInterval() {
        return super.getInterval()/8;
    }
  • 至此,功能已开发完成,再写上main方法,在实例化DetectAndSaveService的时候注意入参有两个,第一个是人脸检测模型的下载地址,第二个是人脸照片保存在本地的位置,还有action方法的参数1000表示预览持续时间是1000秒:

    public static void main(String[] args) {
        String modelFileUrl = "https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml";
        new PreviewCameraWithDetectAndSave(
                new DetectAndSaveService(
                        modelFileUrl,
                        "E:\\temp\\202112\\18\\001\\man"))
                .action(1000);
    }

抓取第一个人的照片

  • 运行main方法,然后请群众演员A登场,看着他一个人对着摄像头,开始……搔首弄姿,各种光线明暗、各种角度、各种表情都用上吧,哎,不忍直视…

  • 由于开启了预览窗口,因此可以看到摄像头拍摄的效果,出现红框的矩形最终都会被保存为图片,请注意调整角度和表情,群众演员A好像很热衷于自拍,玩得不亦乐乎,好吧,让他放飞自我:

  • 检测的图片到了一定数量就可以结束了,我这里保存了259张,如下图:

  • 对以上照片,建议是用肉眼检查一遍所有照片,把不是人脸的全部删除,我发现了十多张不是人脸的照片,例如下面这张把脸上的一部分识别成了人脸,显然是有问题的,这样的照片就删除吧,不要用在训练了:

  • 上述照片全部保存在E:\temp\202112\18\001\man目录下

抓取第二个人的照片

  • 修改代码,把main方法中存放图片的目录改成E:\temp\202112\18\001\woman,然后再次运行程序,请群众演员B登场,恳求她像前一位群众演员那样一个人对着摄像头,开始……搔首弄姿,各种光线明暗、各种角度、各种表情都用上吧

  • 于是,我们又顺利拿到第二位群众演员的大量人脸图片,记得要肉眼观察每一张照片,把不准确的都删除掉

  • 至此,借助前面编写的程序,我们轻松拿到了两位群众演员的大量人脸照片,其中A的照片保存在E:\temp\202112\18\001\man,B的照片保存在E:\temp\202112\18\001\woman

  • 至此,本篇的任务已经完成,下一篇会用这些照片进行训练,为最终的识别做好准备;

欢迎关注博客园:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴…