09-01 Tensorflow1基本使用
阅读原文时间:2023年07月11日阅读:3

目录

更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

Tensorflow基本使用

一、确认安装Tensorflow

import tensorflow as tf

a = tf.constant(10)
b = tf.constant(32)
sess = tf.Session()
print(sess.run(a+b))


42复制

二、获取MNIST数据集

# 获取MNIST数据集
# 获取地址:https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/examples/tutorials/mnist/input_data.py
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'

def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
        os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(
            SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    return filepath

def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data

def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot

def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                'Invalid magic number %d in MNIST label file: %s' %
                (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_to_one_hot(labels)
        return labels

class DataSet(object):
    def __init__(self, images, labels, fake_data=False, one_hot=False,
                 dtype=tf.float32):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = tf.as_dtype(dtype).base_dtype
        if dtype not in (tf.uint8, tf.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                'images.shape: %s labels.shape: %s' % (images.shape,
                                                       labels.shape))
            self._num_examples = images.shape[0]
            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
            if dtype == tf.float32:
                # Convert from [0, 255] -> [0.0, 1.0].
                images = images.astype(numpy.float32)
                images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0

    @property
    def images(self):
        return self._images

    @property
    def labels(self):
        return self._labels

    @property
    def num_examples(self):
        return self._num_examples

    @property
    def epochs_completed(self):
        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):
        """Return the next `batch_size` examples from this data set."""
        if fake_data:
            fake_image = [1] * 784
            if self.one_hot:
                fake_label = [1] + [0] * 9
            else:
                fake_label = 0
            return [fake_image for _ in xrange(batch_size)], [
                fake_label for _ in xrange(batch_size)]
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
            # Finished epoch
            self._epochs_completed += 1
            # Shuffle the data
            perm = numpy.arange(self._num_examples)
            numpy.random.shuffle(perm)
            self._images = self._images[perm]
            self._labels = self._labels[perm]
            # Start next epoch
            start = 0
            self._index_in_epoch = batch_size
            assert batch_size <= self._num_examples
        end = self._index_in_epoch
        return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
    class DataSets(object):
        pass
    data_sets = DataSets()
    if fake_data:
        def fake():
            return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
        data_sets.train = fake()
        data_sets.validation = fake()
        data_sets.test = fake()
        return data_sets
    TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
    TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
    TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
    TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
    VALIDATION_SIZE = 5000
    local_file = maybe_download(TRAIN_IMAGES, train_dir)
    train_images = extract_images(local_file)
    local_file = maybe_download(TRAIN_LABELS, train_dir)
    train_labels = extract_labels(local_file, one_hot=one_hot)
    local_file = maybe_download(TEST_IMAGES, train_dir)
    test_images = extract_images(local_file)
    local_file = maybe_download(TEST_LABELS, train_dir)
    test_labels = extract_labels(local_file, one_hot=one_hot)
    validation_images = train_images[:VALIDATION_SIZE]
    validation_labels = train_labels[:VALIDATION_SIZE]
    train_images = train_images[VALIDATION_SIZE:]
    train_labels = train_labels[VALIDATION_SIZE:]
    data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
    data_sets.validation = DataSet(validation_images, validation_labels,
                                   dtype=dtype)
    data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
    return data_sets复制

三、使用Tensorflow训练——Softmax回归

# 使用Tensorflow 训练——Softmax回归
import time
import tensorflow as tf

# 读取 MNIST 数据集,分成训练数据和测试数据
mnist = read_data_sets('MNIST_data/', one_hot=True)

# 设置训练数据 x,连接权重 W 和偏置 b
x = tf.placeholder('float', [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

# 对 x 和 W 进行内积运算后把结果传递给 softmax 函数,计算输出 y
y = tf.nn.softmax(tf.matmul(x, W)+b)

# 设置期望输出 y_
y_ = tf.placeholder('float', [None, 10])

# 计算交叉熵代价函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y))

# 使用梯度下降法最小化交叉熵代价函数
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

# 初始化所有参数
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

st = time.time()

# 迭代训练
for i in range(1000):
    # 选择训练数据(mini-batch)
    batch_xs, batch_ys = mnist.train.next_batch(100)
    # 训练处理
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# 进行测试,确认实际输出和期望输出是否一致
correct_prediction = tf.equal(tf.argmax(y, -1), tf.argmax(y_, 1))
softmax_time = time.time()-st

# 计算准确率
accuary = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('准确率:%s' % sess.run(accuary, feed_dict={
      x: mnist.test.images, y_: mnist.test.labels}))
softmax_acc = sess.run(accuary, feed_dict={
                       x: mnist.test.images, y_: mnist.test.labels})


Extracting MINIST_data/train-images-idx3-ubyte.gz
Extracting MINIST_data/train-labels-idx1-ubyte.gz
Extracting MINIST_data/t10k-images-idx3-ubyte.gz
Extracting MINIST_data/t10k-labels-idx1-ubyte.gz
准确率:0.9191复制

四、使用Tensorflow训练——卷积神经网络

# 构建网络组件
import time
import tensorflow as tf

def weight_variable(shape):
    """
    初始化连接权重
    """
    # truncated_normal()根据指定的标准差创建随机数
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    """
    初始化偏置
    """
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    """
    构建卷积层
    x: 输入数据,四维参数——批大小、高度、宽度和通道数
    W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
    """
    # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
    # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    """
    构建池化层
    x: 输入数据,四维参数——批大小、高度、宽度和通道数
    """
    # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 读取MNIST数据集
mnist = read_data_sets('MNIST_data', one_hot=True)
# 输入数据,二维数据shape=[批大小, 数据维度]
x = tf.placeholder('float', shape=[None, 784])
# 期望输出
y_ = tf.placeholder('float', shape=[None, 10])

# 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
x_image = tf.reshape(x, [-1, 28, 28, 1])


# 定义网络结构
# 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

# 激活函数及池化
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool = max_pool_2x2(h_conv1)

# 第2个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

# 激活函数及池化
h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# 设置全连接层的参数
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])

# 全连接层
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)

# Dropout
keep_prob = tf.placeholder('float')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 设置全连接层的参数
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

# softmax 函数
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

# 误差函数,交叉熵代价函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))


# 训练模型
# 训练方法
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 测试方法
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

# 创建训练用的会话
sess = tf.Session()

# 初始化参数
sess.run(tf.global_variables_initializer())

st = time.time()

# 迭代处理
for i in range(1000):
    # 选择训练数据(mini-batch)
    batch = mnist.train.next_batch(50)
    # 训练处理
    _, loss_value = sess.run([train_step, cross_entropy], feed_dict={
                             x: batch[0], y_: batch[1], keep_prob: 0.5})

    # 测试
    if i % 100 == 0:
        acc = sess.run(accuracy, feed_dict={
            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
        print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')

print(f'Softmax回归训练时间:{softmax_time}')
print(f'卷积神经网络训练时间:{time.time()-st}')

# 测试
acc = sess.run(accuracy, feed_dict={
               x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

print(f'Softmax回归准确率:{softmax_acc}')
print(f'卷积神经网络准确率:{acc}')


卷积神经网络迭代 0 次的准确率:0.08910000324249268
卷积神经网络迭代 100 次的准确率:0.8474000096321106
卷积神经网络迭代 200 次的准确率:0.9085000157356262
卷积神经网络迭代 300 次的准确率:0.9266999959945679
卷积神经网络迭代 400 次的准确率:0.9399999976158142
卷积神经网络迭代 500 次的准确率:0.9430999755859375
卷积神经网络迭代 600 次的准确率:0.953499972820282
卷积神经网络迭代 700 次的准确率:0.9571999907493591
卷积神经网络迭代 800 次的准确率:0.9599999785423279
卷积神经网络迭代 900 次的准确率:0.9613000154495239
Softmax回归训练时间:2.030284881591797
卷积神经网络训练时间:394.48987913131714
Softmax回归准确率:0.9190999865531921
卷积神经网络准确率:0.9670000076293945复制

五、使用Tensorflow进行可视化

# 使用Tensorflow进行可视化
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import time
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'

def maybe_download(filename, work_directory):
    """Download the data from Yann's website, unless it's already here."""
    if not os.path.exists(work_directory):
        os.mkdir(work_directory)
    filepath = os.path.join(work_directory, filename)
    if not os.path.exists(filepath):
        filepath, _ = urllib.request.urlretrieve(
            SOURCE_URL + filename, filepath)
        statinfo = os.stat(filepath)
        print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
    return filepath

def _read32(bytestream):
    dt = numpy.dtype(numpy.uint32).newbyteorder('>')
    return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        return data

def dense_to_one_hot(labels_dense, num_classes=10):
    """Convert class labels from scalars to one-hot vectors."""
    num_labels = labels_dense.shape[0]
    index_offset = numpy.arange(num_labels) * num_classes
    labels_one_hot = numpy.zeros((num_labels, num_classes))
    labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
    return labels_one_hot

def extract_labels(filename, one_hot=False):
    """Extract the labels into a 1D uint8 numpy array [index]."""
    print('Extracting', filename)
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2049:
            raise ValueError(
                'Invalid magic number %d in MNIST label file: %s' %
                (magic, filename))
        num_items = _read32(bytestream)
        buf = bytestream.read(num_items)
        labels = numpy.frombuffer(buf, dtype=numpy.uint8)
        if one_hot:
            return dense_to_one_hot(labels)
        return labels

class DataSet(object):
    def __init__(self, images, labels, fake_data=False, one_hot=False,
                 dtype=tf.float32):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.
        """
        dtype = tf.as_dtype(dtype).base_dtype
        if dtype not in (tf.uint8, tf.float32):
            raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                            dtype)
        if fake_data:
            self._num_examples = 10000
            self.one_hot = one_hot
        else:
            assert images.shape[0] == labels.shape[0], (
                'images.shape: %s labels.shape: %s' % (images.shape,
                                                       labels.shape))
            self._num_examples = images.shape[0]
            # Convert shape from [num examples, rows, columns, depth]
            # to [num examples, rows*columns] (assuming depth == 1)
            assert images.shape[3] == 1
            images = images.reshape(images.shape[0],
                                    images.shape[1] * images.shape[2])
            if dtype == tf.float32:
                # Convert from [0, 255] -> [0.0, 1.0].
                images = images.astype(numpy.float32)
                images = numpy.multiply(images, 1.0 / 255.0)
        self._images = images
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0

    @property
    def images(self):
        return self._images

    @property
    def labels(self):
        return self._labels

    @property
    def num_examples(self):
        return self._num_examples

    @property
    def epochs_completed(self):
        return self._epochs_completed

    def next_batch(self, batch_size, fake_data=False):
        """Return the next `batch_size` examples from this data set."""
        if fake_data:
            fake_image = [1] * 784
            if self.one_hot:
                fake_label = [1] + [0] * 9
            else:
                fake_label = 0
            return [fake_image for _ in xrange(batch_size)], [
                fake_label for _ in xrange(batch_size)]
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_examples:
            # Finished epoch
            self._epochs_completed += 1
            # Shuffle the data
            perm = numpy.arange(self._num_examples)
            numpy.random.shuffle(perm)
            self._images = self._images[perm]
            self._labels = self._labels[perm]
            # Start next epoch
            start = 0
            self._index_in_epoch = batch_size
            assert batch_size <= self._num_examples
        end = self._index_in_epoch
        return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
    class DataSets(object):
        pass
    data_sets = DataSets()
    if fake_data:
        def fake():
            return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
        data_sets.train = fake()
        data_sets.validation = fake()
        data_sets.test = fake()
        return data_sets
    TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
    TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
    TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
    TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
    VALIDATION_SIZE = 5000
    local_file = maybe_download(TRAIN_IMAGES, train_dir)
    train_images = extract_images(local_file)
    local_file = maybe_download(TRAIN_LABELS, train_dir)
    train_labels = extract_labels(local_file, one_hot=one_hot)
    local_file = maybe_download(TEST_IMAGES, train_dir)
    test_images = extract_images(local_file)
    local_file = maybe_download(TEST_LABELS, train_dir)
    test_labels = extract_labels(local_file, one_hot=one_hot)
    validation_images = train_images[:VALIDATION_SIZE]
    validation_labels = train_labels[:VALIDATION_SIZE]
    train_images = train_images[VALIDATION_SIZE:]
    train_labels = train_labels[VALIDATION_SIZE:]
    data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
    data_sets.validation = DataSet(validation_images, validation_labels,
                                   dtype=dtype)
    data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
    return data_sets

def weight_variable(shape):
    """
    初始化连接权重
    """
    # truncated_normal()根据指定的标准差创建随机数
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    """
    初始化偏置
    """
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def conv2d(x, W):
    """
    构建卷积层
    x: 输入数据,四维参数——批大小、高度、宽度和通道数
    W: 卷积核参数,四维参数——卷积核高度、卷积核宽度、输入通道数和输出通道数
    """
    # strides设置卷积核移动的步长,strides=[1,2,2,1]步长为2
    # padding设置是否补零填充,padding='SAME'为填充;padding='VALID'为不填充
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    """
    构建池化层
    x: 输入数据,四维参数——批大小、高度、宽度和通道数
    """
    # ksize设置池化窗口的大小,四维参数——批大小、高度、宽度和通道数
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 读取MNIST数据集
mnist = read_data_sets('MNIST_data', one_hot=True)

# # 输入数据,二维数据shape=[批大小, 数据维度]
# x = tf.placeholder('float', shape=[None, 784])
# # 期望输出
# y_ = tf.placeholder('float', shape=[None, 10])

# 通过as_default()生成一个计算图
with tf.Graph().as_default():
    # 设置数据集和期望输出
    x = tf.placeholder('float', shape=[None, 784], name='Input')
    y_ = tf.placeholder('float', shape=[None, 10], name='GroundTruth')
    # 修改数据集格式(批大小*28*28*通道数),即把二维数据修改成四维张量[-1,28,28,1]
    x_image = tf.reshape(x, [-1, 28, 28, 1])

    # 第1个卷积层,weight_variable([卷积核高度,卷积核宽度,通道数,卷积核个数])
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])

    # 激活函数及池化
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
    h_pool = max_pool_2x2(h_conv1)

    # 第2个卷积层
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])

    # 激活函数及池化
    h_conv2 = tf.nn.relu(conv2d(h_pool, W_conv2)+b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)

    # 设置全连接层的参数
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])

    # 全连接层
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1)+b_fc1)

    # Dropout
    keep_prob = tf.placeholder('float')
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # 设置全连接层的参数
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    # softmax 函数
    # y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)
    with tf.name_scope('Output') as scope:
        y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

    # 误差函数,交叉熵代价函数
    # cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    with tf.name_scope('xentropy') as scope:
        cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
        # tf.summary.scalar()输出训练情况
        ce_summ = tf.summary.scalar('cross_entropy', cross_entropy)

    # 训练方法
    # train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    with tf.name_scope('train') as scope:
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

    # 测试方法
    # correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    # accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
    with tf.name_scope('test') as scope:
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
        accuracy_summary = tf.summary.scalar('accuracy', accuracy)

    # 创建训练用的会话
    sess = tf.Session()

    # 初始化参数
    sess.run(tf.global_variables_initializer())

    # 训练情况的输出设置(新增)
    # 把设置的所有输出操作合并为一个操作
    summary_op = tf.summary.merge_all()
    # tf.summary.FileWriter()保存训练数据,graph_def为图(网络结构)
    summary_writer = tf.summary.FileWriter('MNIST_data', graph_def=sess.graph_def)

    st = time.time()

    # 迭代处理
    for i in range(1000):
        # 选择训练数据(mini-batch)
        batch = mnist.train.next_batch(50)
        # 训练处理
        _, loss_value = sess.run([train_step, cross_entropy], feed_dict={
                                 x: batch[0], y_: batch[1], keep_prob: 0.5})

        # 测试
        if i % 100 == 0:
            #         acc = sess.run(accuracy, feed_dict={
            #             x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
            # summary_op输出训练数据,accuracy进行测试
            result = sess.run([summary_op, accuracy], feed_dict={
                x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
            # 传递summary_op
            summary_str = result[0]
            # 传递acc
            acc = result[1]
            # add_summary()输出summary_str的内容
            summary_writer.add_summary(summary_str, i)
            print(f'卷积神经网络迭代 {i} 次的准确率:{acc}')

    print(f'卷积神经网络训练时间:{time.time()-st}')

    # 测试
    acc = sess.run(accuracy, feed_dict={
                   x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})

    print(f'卷积神经网络准确率:{acc}')


Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:Passing a `GraphDef` to the SummaryWriter is deprecated. Pass a `Graph` object instead, such as `sess.graph`.
卷积神经网络迭代 0 次的准确率:0.11810000240802765
卷积神经网络迭代 100 次的准确率:0.8456000089645386
卷积神经网络迭代 200 次的准确率:0.9088000059127808
卷积神经网络迭代 300 次的准确率:0.9273999929428101
卷积神经网络迭代 400 次的准确率:0.935699999332428
卷积神经网络迭代 500 次的准确率:0.9404000043869019
卷积神经网络迭代 600 次的准确率:0.9490000009536743
卷积神经网络迭代 700 次的准确率:0.951200008392334
卷积神经网络迭代 800 次的准确率:0.95660001039505
卷积神经网络迭代 900 次的准确率:0.9592999815940857
卷积神经网络训练时间:374.29131293296814
卷积神经网络准确率:0.963699996471405复制

终端运行:tensorboard --logdir ~/Desktop/jupyter/deepLearning/图解深度学习-tensorflow/MNIST_data Starting Tensor- Board on port 6006

  • 其中--logdir指定的是完整路径目录