#测试算法:作为完整程序验证分类器
def datingClassTest():
hoRatio = 0.10 #设置测试集比重,前10%作为测试集,后90%作为训练集
datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0] #得到样本数量m
numTestVecs = int(m*hoRatio) #得到测试集最后一个样本的位置
errorCount = 0.0 #初始化定义错误个数为0
for i in range(numTestVecs):
#测试集中元素逐一放进分类器测试,k = 3
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
#输出分类结果与实际label
print("the classifier came back with: %d, the real answer is: %d"% (classifierResult, datingLabels[i]))
#若预测结果与实际label不同,则errorCount+1
if (classifierResult !=datingLabels[i]): errorCount += 1.0
#输出错误率 = 错误的个数 / 总样本个数
print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
输入命令:kNN.datingClassTest()
手机扫一扫
移动阅读更方便
你可能感兴趣的文章