hdu 4503 湫湫系列故事——植树节(组合概率)
阅读原文时间:2023年07月08日阅读:4

这是一道求组合的题。中文题面应该能看懂,废话不多说下面来说说这道题。

可以选的总组合数是Ck3

那么选到3个人的关系都相同,要么都认识,要么都不认识。可以重反面来考虑,就是求三个人的关系不都相同。

那么对于第一个人有guanxi[1]个与他认识有k-guanxi[1]-1个与他不认识,那么符合三个人关系不都相同的种数为(k-guanxi[1]-1)*guanxi[1];

同理对于后面的人也是这样的。

最后把这些种数加起来,这里面肯定有重复的,比如A与B认识与C不识,B与C相识,计算A时的组合为ABC,计算B时的组合为0,计算C时组合为CBA,

那么就有重复了。

因为每两个人只会对应一种关系所以A与B认识,在选A时选了AB,然后再加个不认识的C,在选B时如果有BAC这个组合,那么说明C与B的关系是不识,那么当在选C时

就不可能再选到ABC这组合,如果在选C时存在ABC,说明C认识B,那么在选B时就不可能有ABC了。所以这样的话就是每个组合都重复了以次,所以总得不符合个数/2就为不符合的实际个数。

那么问题就解决了为总的组合数-实际不符合的个数。

下面看代码:

1 #include
2 #include
3 #include
4 #include
5 typedef long long ll;
6 double guanxi[2000];
7 int main(void)
8 {
9 int i,j,k,p,q,n;
10 double x,y;
11 scanf("%d",&n);
12 while(n--)
13 {
14 scanf("%d",&k);
15 ll dd=0;
16 for(i=0; i<k; i++)
17 {
18 scanf("%lf",&guanxi[i]);
19 dd+=(k-guanxi[i]-1)*guanxi[i];
20
21 }
22 ll x1=k*(k-1)*(k-2)/6;//总的组合数
23 double x2=x1-dd/2;//dd/2为实际不符合的个数。
24 x=1.0*x2/(1.0*x1);
25 printf("%.3f\n",x);
26 }
27 return 0;
28
29 }

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章