https://www.luogu.org/problemnew/show/P1198
现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:LL不超过当前数列的长度。(L > 0)(L>0)
2、 插入操作。
语法:A n
功能:将nn加上tt,其中tt是最近一次查询操作的答案(如果还未执行过查询操作,则t=0t=0),并将所得结果对一个固定的常数DD取模,将所得答案插入到数列的末尾。
限制:nn是整数(可能为负数)并且在长整范围内。
注意:初始时数列是空的,没有一个数。
输入格式:
第一行两个整数,MM和DD,其中MM表示操作的个数(M \le 200,000)(M≤200,000),DD如上文中所述,满足(0<D<2,000,000,000)(0<D<2,000,000,000)
接下来的MM行,每行一个字符串,描述一个具体的操作。语法如上文所述。
输出格式:
对于每一个查询操作,你应该按照顺序依次输出结果,每个结果占一行。
输入样例#1: 复制
5 100
A 96
Q 1
A 97
Q 1
Q 2
输出样例#1: 复制
96
93
96
单调栈解法。因为题目求的是末尾L个数的最大值,利用两个栈分别存储最大值和最大值的位置。然后二分查找。注意二分查找时上界是总得个数减去区间长度,而不是栈的空间减去区间长度,因为不符合栈的数值已经出栈了。
单调栈解法参考自:https://www.luogu.org/blog/user38348/solution-p1198
#include
#include
#include
#define ll long long
using namespace std;
long long Stack[2][200010];
long long cnt=0,top=0;
void add(long long val){
cnt++;
while(Stack[0][top]
Stack[0][++top]=val;
Stack[1][top]=cnt;
}
long long quiry(long long L){
int l=1,r=top;
int ind=cnt-L+1;
// int ind=top-L+1;
while(l
if(Stack[1][mid]
if(c=='A'){
add((t+d)%D);
}
else if(c=='Q'){
t=quiry(d);
printf("%lld\n",t);
}
}
return 0;
}
线段树解法,维护区间的最大值。
#include
#include
#include
#define ll long long
using namespace std;
const int maxn=200010*4;
ll Max[maxn];
void add(int p,int l,int r,int x,ll c){
if(l==r){
Max[p]=c;return;
}
int mid=(l+r)>>1;
if(x<=mid) add(p<<1,l,mid,x,c);
else add(p<<1|1,mid+1,r,x,c);
Max[p]=max(Max[p<<1],Max[p<<1|1]);
}
int quiry(int p,int l,int r,int a,int b){
if(a>r||b
return max(quiry(p<<1,l,mid,a,b),quiry(p<<1|1,mid+1,r,a,b));
}
int main(int argc, char** argv) {
int M,D;
scanf("%d %d",&M,&D);
fill(Max,Max+maxn,-1e8);
ll t=0;
int x=0;
while(M--){
char c;int d;
cin>>c>>d;
if(c=='A'){
x++;
ll num=(t+d)%D;
add(1,1,200010,x,num);
}else if(c=='Q'){
t=quiry(1,1,200010,x-d+1,x);
printf("%lld\n",t);
}
}
return 0;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章