如何使用openssl生成RSA公钥和私钥对
http://blog.csdn.net/scape1989/article/details/18959657
https://www.openssl.org/docs/manmaster/apps/rsautl.html
C# RSACryptoServiceProvider加密解密签名验签和DESCryptoServiceProvider加解密
http://www.2cto.com/kf/201007/52626.html
RSA Key Converter(XML to PEM,PEM to XML)
https://superdry.apphb.com/tools/online-rsa-key-converter
openssl
it defaulte generate RSA format , sometimes need convert to pkcs8 format
generate a private key pair with pkcs8 format
openssl>pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM –nocrypt
generate a private key pair with pem format
openssl>genrsa -out rsa_private_key.pem 1024
output the public key
openssl>rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem
use public key to encrypt data
openssl>rsautl -encrypt -in orig.txt -inkey rsa_public_key.pem -pubin -out orig.en
use private key to decrypt data
openssl>rsautl -decrypt -in orig.en -inkey rsa_private_key.pem -out orig.de
use private key to signature data
rsautl -sign -in orig.txt -inkey rsa_private_key.pem -out sig
output the data with private key from signed data
rsautl -verify -in sig -inkey rsa_private_key.pem
!!!Error:output the data with public key from signed data
rsautl -verify -in sig -inkey rsa_public_key.pem
Examine the reaw signed data
rsautl -verify -in sig -inkey rsa_private_key.pem -raw -hexdump
SSOBLL
sso = newSSOBLL();
string
signature = sso.SignData(string.Empty,SSOBLL.KeyType.PrivatePEM,
sigData);
string
signature2 = sso.SignData(string.Empty,SSOBLL.KeyType.PrivateXML,
sigData);
bool
valid = sso.VerifySignData(string.Empty,SSOBLL.KeyType.PublicXML,sigData,Convert.FromBase64String(signature));
public class SSOBLL
{
public enum KeyType
{
PrivatePEM,
PublicPEM,
PrivateXML,
PublicXML
}
public string SignData(string privateKeyStr, KeyType keyType, string dataStr)
{
byte\[\] data = Encoding.UTF8.GetBytes(dataStr);
string base64 = string.Empty;
if (keyType == KeyType.PrivatePEM)
{
string keyStr = GetKey(privateKeyStr, KeyType.PrivatePEM);
byte\[\] privateKey = Helpers.GetBytesFromPEM(keyStr, PemStringType.RsaPrivateKey);
RSACryptoServiceProvider rsa = Crypto.DecodeRsaPrivateKey(privateKey);
byte\[\] hash = rsa.SignData(data, SHA1.Create());
base64 = Convert.ToBase64String(hash);
}
if (keyType == KeyType.PrivateXML)
{
string privatekey = GetKey(privateKeyStr, keyType);
RSACryptoServiceProvider oRSA3 = new RSACryptoServiceProvider();
oRSA3.FromXmlString(privatekey);
byte\[\] BOutput = oRSA3.SignData(data, "SHA1");
base64 = Convert.ToBase64String(BOutput);
}
return base64;
}
public bool VerifySignData(RSACryptoServiceProvider rsa, KeyType keyType, string dataStr, byte\[\] dataHash)
{
byte\[\] data = Encoding.UTF8.GetBytes(dataStr);
bool valid = false;
if (keyType == KeyType.PublicPEM)
{
RSAParameters key = rsa.ExportParameters(false); // false:公钥 true:私钥
RSACryptoServiceProvider RSAalg = new RSACryptoServiceProvider();
RSAalg.ImportParameters(key);
valid = RSAalg.VerifyData(data, new SHA1CryptoServiceProvider(), dataHash);
}
else if (keyType == KeyType.PublicXML)
{
string publickey = rsa.ToXmlString(false);//false:公钥 true:私钥
valid = VerifySignData(publickey, keyType, dataStr, dataHash);
}
return valid;
}
public bool VerifySignData(string keyStr, KeyType keyType, string dataStr, byte\[\] dataHash)
{
byte\[\] data = Encoding.UTF8.GetBytes(dataStr);
bool valid = false;
if (keyType == KeyType.PublicXML)
{
RSACryptoServiceProvider oRSA4 = new RSACryptoServiceProvider();
string publickey = GetKey(keyStr, KeyType.PublicXML);
oRSA4.FromXmlString(publickey);
valid = oRSA4.VerifyData(data, "SHA1", dataHash);
}
return valid;
}
private string GetKey(string keyStr, KeyType keyType)
{
string key = keyStr;
if (string.IsNullOrWhiteSpace(keyStr))
{
string KeyFile = AppDomain.CurrentDomain.BaseDirectory;
switch (keyType)
{
case KeyType.PrivatePEM:
KeyFile += @"Keys\\private.pem";
break;
case KeyType.PublicPEM:
KeyFile += @"Keys\\public.pem";
break;
case KeyType.PrivateXML:
KeyFile += @"Keys\\private.xml";
break;
case KeyType.PublicXML:
KeyFile += @"Keys\\public.xml";
break;
default:
KeyFile += @"Keys\\private.pem";
break;
}
key = File.ReadAllText(KeyFile);
}
return key;
}
}
public class Crypto
{
///
/// Byte array containing PEM string of private key.
///
public static RSACryptoServiceProvider DecodeRsaPrivateKey(byte[] privateKeyBytes)
{
MemoryStream ms = new MemoryStream(privateKeyBytes);
BinaryReader rd = new BinaryReader(ms);
try
{
byte byteValue;
ushort shortValue;
shortValue = rd.ReadUInt16();
switch (shortValue)
{
case 0x8130:
// If true, data is little endian since the proper logical seq is 0x30 0x81
rd.ReadByte(); //advance 1 byte
break;
case 0x8230:
rd.ReadInt16(); //advance 2 bytes
break;
default:
Debug.Assert(false); // Improper ASN.1 format
return null;
}
shortValue = rd.ReadUInt16();
if (shortValue != 0x0102) // (version number)
{
Debug.Assert(false); // Improper ASN.1 format, unexpected version number
return null;
}
byteValue = rd.ReadByte();
if (byteValue != 0x00)
{
Debug.Assert(false); // Improper ASN.1 format
return null;
}
// The data following the version will be the ASN.1 data itself, which in our case
// are a sequence of integers.
// In order to solve a problem with instancing RSACryptoServiceProvider
// via default constructor on .net 4.0 this is a hack
CspParameters parms = new CspParameters();
parms.Flags = CspProviderFlags.NoFlags;
parms.KeyContainerName = Guid.NewGuid().ToString().ToUpperInvariant();
parms.ProviderType = ((Environment.OSVersion.Version.Major > 5) || ((Environment.OSVersion.Version.Major == 5) && (Environment.OSVersion.Version.Minor >= 1))) ? 0x18 : 1;
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(parms);
RSAParameters rsAparams = new RSAParameters();
rsAparams.Modulus = rd.ReadBytes(Helpers.DecodeIntegerSize(rd));
// Argh, this is a pain. From emperical testing it appears to be that RSAParameters doesn't like byte buffers that
// have their leading zeros removed. The RFC doesn't address this area that I can see, so it's hard to say that this
// is a bug, but it sure would be helpful if it allowed that. So, there's some extra code here that knows what the
// sizes of the various components are supposed to be. Using these sizes we can ensure the buffer sizes are exactly
// what the RSAParameters expect. Thanks, Microsoft.
RSAParameterTraits traits = new RSAParameterTraits(rsAparams.Modulus.Length \* 8);
rsAparams.Modulus = Helpers.AlignBytes(rsAparams.Modulus, traits.size\_Mod);
rsAparams.Exponent = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_Exp);
rsAparams.D = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_D);
rsAparams.P = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_P);
rsAparams.Q = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_Q);
rsAparams.DP = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_DP);
rsAparams.DQ = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_DQ);
rsAparams.InverseQ = Helpers.AlignBytes(rd.ReadBytes(Helpers.DecodeIntegerSize(rd)), traits.size\_InvQ);
rsa.ImportParameters(rsAparams);
return rsa;
}
catch (Exception)
{
Debug.Assert(false);
return null;
}
finally
{
rd.Close();
}
}
}
public enum PemStringType
{
Certificate,
RsaPrivateKey,
RsaPublicKey
}
public class Helpers
{
/// <summary>
/// This helper function parses an integer size from the reader using the ASN.1 format
/// </summary>
/// <param name="rd"></param>
/// <returns></returns>
public static int DecodeIntegerSize(System.IO.BinaryReader rd)
{
byte byteValue;
int count;
byteValue = rd.ReadByte();
if (byteValue != 0x02) // indicates an ASN.1 integer value follows
return 0;
byteValue = rd.ReadByte();
if (byteValue == 0x81)
{
count = rd.ReadByte(); // data size is the following byte
}
else if (byteValue == 0x82)
{
byte hi = rd.ReadByte(); // data size in next 2 bytes
byte lo = rd.ReadByte();
count = BitConverter.ToUInt16(new\[\] { lo, hi }, 0);
}
else
{
count = byteValue; // we already have the data size
}
//remove high order zeros in data
while (rd.ReadByte() == 0x00)
{
count -= 1;
}
rd.BaseStream.Seek(-1, System.IO.SeekOrigin.Current);
return count;
}
/// <summary>
///
/// </summary>
/// <param name="pemString"></param>
/// <param name="type"></param>
/// <returns></returns>
public static byte\[\] GetBytesFromPEM(string pemString, PemStringType type)
{
string header; string footer;
switch (type)
{
case PemStringType.Certificate:
header = "-----BEGIN CERTIFICATE-----";
footer = "-----END CERTIFICATE-----";
break;
case PemStringType.RsaPrivateKey:
header = "-----BEGIN RSA PRIVATE KEY-----";
footer = "-----END RSA PRIVATE KEY-----";
break;
case PemStringType.RsaPublicKey:
header = "-----BEGIN PUBLIC KEY-----";
footer = "-----END PUBLIC KEY-----";
break;
default:
return null;
}
int start = pemString.IndexOf(header) + header.Length;
int end = pemString.IndexOf(footer, start) - start;
return Convert.FromBase64String(pemString.Substring(start, end));
}
/// <summary>
///
/// </summary>
/// <param name="inputBytes"></param>
/// <param name="alignSize"></param>
/// <returns></returns>
public static byte\[\] AlignBytes(byte\[\] inputBytes, int alignSize)
{
int inputBytesSize = inputBytes.Length;
if ((alignSize != -1) && (inputBytesSize < alignSize))
{
byte\[\] buf = new byte\[alignSize\];
for (int i = 0; i < inputBytesSize; ++i)
{
buf\[i + (alignSize - inputBytesSize)\] = inputBytes\[i\];
}
return buf;
}
else
{
return inputBytes; // Already aligned, or doesn't need alignment
}
}
internal class RSAParameterTraits
{
public RSAParameterTraits(int modulusLengthInBits)
{
// The modulus length is supposed to be one of the common lengths, which is the commonly referred to strength of the key,
// like 1024 bit, 2048 bit, etc. It might be a few bits off though, since if the modulus has leading zeros it could show
// up as 1016 bits or something like that.
int assumedLength = -1;
double logbase = Math.Log(modulusLengthInBits, 2);
if (logbase == (int)logbase)
{
// It's already an even power of 2
assumedLength = modulusLengthInBits;
}
else
{
// It's not an even power of 2, so round it up to the nearest power of 2.
assumedLength = (int)(logbase + 1.0);
assumedLength = (int)(Math.Pow(2, assumedLength));
System.Diagnostics.Debug.Assert(false); // Can this really happen in the field? I've never seen it, so if it happens
// you should verify that this really does the 'right' thing!
}
switch (assumedLength)
{
case 1024:
this.size\_Mod = 0x80;
this.size\_Exp = -1;
this.size\_D = 0x80;
this.size\_P = 0x40;
this.size\_Q = 0x40;
this.size\_DP = 0x40;
this.size\_DQ = 0x40;
this.size\_InvQ = 0x40;
break;
case 2048:
this.size\_Mod = 0x100;
this.size\_Exp = -1;
this.size\_D = 0x100;
this.size\_P = 0x80;
this.size\_Q = 0x80;
this.size\_DP = 0x80;
this.size\_DQ = 0x80;
this.size\_InvQ = 0x80;
break;
case 4096:
this.size\_Mod = 0x200;
this.size\_Exp = -1;
this.size\_D = 0x200;
this.size\_P = 0x100;
this.size\_Q = 0x100;
this.size\_DP = 0x100;
this.size\_DQ = 0x100;
this.size\_InvQ = 0x100;
break;
default:
System.Diagnostics.Debug.Assert(false); // Unknown key size?
break;
}
}
public int size\_Mod = -1;
public int size\_Exp = -1;
public int size\_D = -1;
public int size\_P = -1;
public int size\_Q = -1;
public int size\_DP = -1;
public int size\_DQ = -1;
public int size\_InvQ = -1;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章