什么是异步编程?
异步编程是可以让程序并行运行的一种手段,其可以让程序中的一个工作单元与主应用程序线程分开独立运行,并且在工作单元运行结束后,会通知主应用程序线程它的运行结果或者失败原因。使用异步编程可以提高应用程序的性能和响应能力。[^1]
应当注意的是,所谓的异步编程能提高效率这句话并不严谨,严格的来说它是利用了等待时间以优化整体的时间效率,而对于其中任意一项工作其本来的效率并没提高。
如果你对此概念的理解还是十分抽象,下面我们用一道小学数学题来举例。
小明的妈妈做饭要a分钟,烧水要b分钟,请问小明妈妈烧水并做饭一共要多长时间(a与b均大于0)?我们不妨记最终所用时间为T,则有如下情况:
\[T_1 = a + b
\]
\[T_2 = \max (a,b)
\]
然而由简单的数学知识可知
\[x \le \max (a,b) < a+b,\space x\in \left \{ a,b \right \}
\]
所以问题来了:对于烧水或做饭的效率提高了吗?答案是没有。因为烧水仍然要b分钟,做饭仍然要a分钟。然而对于整体的效率却得到了提升,就如上方公式所表示的那样。
在.net中所谓的异步方法,一般是指async关键字修饰的方法。该方法有如下特点:
Task<T>
,T是真正的返回值类型,如Task<int>
。即使方法没有返回值,也最好把返回值声明为非泛型的Task。(按钮等控件事件响应方法用void)下面我们利用C#自带的异步同步方法写入再读取txt文件
同步方法:
//同步
using System;
namespace ConsoleApp1
{
class Program
{
static void Main(string[] args)
{
string filename = "test.txt"; //读取/写入文件名
File.WriteAllText(filename, "hello,world");
string str = File.ReadAllText(filename);
Console.WriteLine(str);
}
}
}
异步方法:
//异步
using System;
namespace ConsoleApp1
{
class Program
{
static async Task Main(string[] args) //注意这里Main函数变化
{
string filename = "test.txt"; //读取/写入文件名
//如果此处不写await,此处不会等待就进行读取。当数据多的时候,一边写一边读,由于写入操作占用文件,当执行下方读取语句的时候程序会报错。
await File.WriteAllTextAsync(filename, "hello");
/*
* 对于ReadAllTextAsync返回值是Task<string>,添加await后会自动把string从Task拿出来
* 否则要这样写
* Task<string> t = File.ReadAllTextAsync(filename);
* string str = await t;
*/
string str = await File.ReadAllTextAsync(filename);
Console.WriteLine(str);
}
}
}
官方给的方法有了,那么接下来我们写一个自己的异步方法来获取百度的html
using System;
namespace ConsoleApp1
{
class Program
{
static async Task Main(string[] args)
{
int a = await DownloadHtmlAsync("https://www.baidu.com", @"test.txt");
Console.WriteLine("写入完毕!字符串长度为{0}",a);
}
//获取百度htnl并写入文件中,返回html字符串长度
static async Task<int> DownloadHtmlAsync(string url, string filename)
{
HttpClient client = new HttpClient(); //.net5及以上
string html = await client.GetStringAsync(url);
await File.WriteAllTextAsync(filename, html);
return html.Length;
}
}
}
输出结果为
写入完毕!字符串长度为9193
打开生成的可执行文件同一目录下的test.txt发现果然获取到了。Html代码太长,此处我就不放出来了。
那么还会有人问,如果某些地方不支持异步方法,那怎么办呢。其实我们只需要在异步方法后面加.Wait()
或.Result
就可以了(不推荐),代码如下:
//此处为了简洁仅给出了Main函数部分
static void Main(string args[]) //注意此处的Main我们并没用async关键字
{
File.WriteAllTextAsync("text.txt", "hello,world").Wait();
string str = File.ReadAllTextAsync(@"test.txt").Result;
Console.WriteLine(str);
}
尽管这种方式可以达成目的,但是还是不推荐,因为这种方式可能会面临死锁的风险。
死锁是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。[^2]
在一些情况下我们可能会将异步方法放到线程池来执行。
如果该方法是用正则表达式写的匿名方法的话,则只需要在前面使用async关键字即可。
ThreadPool.QueueUserWorkItem(async (obj) =>{
while(true)
{
await File.WriteAllTextAsync(@"test.txt", "hello,world");
}
});
我们编译如下代码获取百度Html,并向test.txt写入内容做示范
using System;
using System.Net.Http;
namespace ConsoleApp1
{
class Program
{
static async Task Main(string []args) //注意此处的Main我们并没用async限定符
{
using (HttpClient client = new HttpClient())
{
string html = await client.GetStringAsync("https://www.baidu.com");
Console.WriteLine(html);
}
string txt = "hello,world";
string filename = "test.txt";
await File.WriteAllTextAsync(filename, txt);
string str = await File.ReadAllTextAsync(filename);
Console.WriteLine("文件内容: {0}",str);
}
}
}
然后利用ILSpy反编译生成的Dll文件,查看编译器到底给我们做了什么工作来探究async与await背后的原理。
ILSpy可以从GitHub上下载 GitHub - icsharpcode/ILSpy
将ILSpy版本设置成C#4.0
然后发现有两个Main函数
通过查看代码我们便知道,真正的Main实际上是void类型的,这是编译器帮我们搞定的,这个Main中调用了写代码的时候被async修饰返回值为Task的Main函数。
而通过查看<Main>d_0
的代码我们可以分析出async与await的底层原理:
我们为了验证上面await的过程可以去尝试打印线程的ID,只要出现线程ID不同即可证明。代码如下:
//利用异步写入一个很大的此字符串增加时间以防止线程ID相同(字符串较小ID可能会相同)
static async Task Main(string []args)
{
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
StringBuilder sb = new StringBuilder(); //StringBuilder需要using System.Text
for(int i = 0; i < 10000; i++)
{
sb.Append("XXXXXX");
}
await File.WriteAllTextAsync(@"test.txt", sb.ToString());
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
}
在我的PC上运行结果如下,很显然进程ID不一样。
1
10
我们来执行下一段代码
using System;
using System.Text;
namespace ConsoleApp1
{
class Program
{
static async Task Main(string []args)
{
Console.WriteLine("之前ID: "+Thread.CurrentThread.ManagedThreadId);
await CalcAsync(5000);
Console.WriteLine("之后: "+Thread.CurrentThread.ManagedThreadId);
}
//n个随机数相加
static async Task<double> CalcAsync(int n)
{
Console.WriteLine("CalcAsync: " + Thread.CurrentThread.ManagedThreadId);
double result = 0;
Random random = new Random();
for(var i = 0; i < n; i++)
result += random.NextDouble();
return result;
}
}
}
查看输出结果中的线程ID发现并没有变。
实际上,异步方法并不会自动在新的线程中执行,除非把代码放到新线程中去。看到这里你可能会问,为什么上文中的线程ID变了呢?
那是因为我们在上文中用当都是内部方法,其实现本就带了Task。
如果我们将上面的CalcAsync方法改成下面的,就能看到进程ID改变了。
static async Task<double> CalcAsync(int n)
{
return await Task.Run(() =>
{
Console.WriteLine("CalcAsync: " + Thread.CurrentThread.ManagedThreadId);
double result = 0;
Random random = new Random();
for (var i = 0; i < n; i++)
result += random.NextDouble();
return result;
});
}
下面来看这两种方法:
static async Task<string> ReadFileAsync(int num)
{
if (num == 0)
return await File.ReadAllTextAsync("test1.txt");
else if (num == 1)
return await File.ReadAllTextAsync("test2.txt");
else
throw new ArgumentException("num invalid");
}
static Task<string> ReadFileAsync(int num)
{
if (num == 0)
return File.ReadAllTextAsync("test1.txt");
else if (num == 1)
return File.ReadAllTextAsync("test2.txt");
else
throw new ArgumentException("num invalid");
}
首先要说明的是,这两种方法都是符合语法规范的并且结果一致。第一种方法,把Task的string拆出来然后返回时又封装了回去,是一个异步方法;而第二种在调用时相当于直接访问的返回的Task,是一个普通的方法,但使用起来是异步的(相当于直接用File.ReadAllTextAsync)。
然而对于异步方法来讲,通过上文中的反编译可知,异步方法会生成一个类,占用更多的线程,运行效率没有普通方法高。第二种方法很好的避免了这个现象,因此必要时我们可以采用第二种方法。
但如果不是简单地将内部的Task返回出来,而是要对值进行某些操作然后再返回的话(比如将string字符串后面再加上一段),那么只能老实地去使用async与await关键字了。
static async Task<string> ReadFileAsync(int num)
{
if (num == 0)
{
string s = await File.ReadAllTextAsync("test1.txt");
s += "123";
}
else if (num == 1)
{
string s = await File.ReadAllTextAsync("test2.txt");
s += "123";
}
else
throw new ArgumentException("num invalid");
}
如果想要在异步方法中暂停一段时间,不要用Sleep方法,因为它会阻塞调用线程,降低并发。
Thread.Sleep(3000); // 暂停3000ms,会阻塞线程调用
如果要实现类似效果的话,可以用await关键字加Delay方法 ,用法如下
await Task.Delay(); //异步暂停3000ms
在以前版本的.net给出了Thread.Abort()
方法,但这种方法是强制结束线程的,可能产生一些问题,尽量不要去使用它。
有时需要提前终止任务,如请求超时,用户取消请求。很多异步方法都有CancellationToken参数用于提请终止执行的信号。
CancellationToken是一个结构体,它有如下几个成员
None
空bool IsCancellationRequested
是否取消(*)Register(Action callback)
注册取消监听ThrowIfCancellationRequested()
如果任务被取消执行到这句话就抛出异常在创建CancellationToken结构体时,一般不是通过new关键字去完成的,而是通过CancellationTokenSource类去创建的。
CancellationTokenSource有几个重要的方法:
CancelAfter()
超时后发出取消信号Cancel()
发出取消信号我们利用上面的知识编写一个方法,要求下载一个网页Html n次,但是在一秒钟后会被取消,当然这个过程是异步的。
static async Task Main(string []args)
{
CancellationTokenSource cts = new CancellationTokenSource();
cts.CancelAfter(1000); //1秒后取消操作
CancellationToken cToken = cts.Token;
await DownloadHtml("https://www.baidu.com", 100, cToken);
}
static async Task DownloadHtml(string url, int n, CancellationToken cancellationToken)
{
using(HttpClient client = new HttpClient())
{
for(var i = 0; i < n; i++)
{
string html = await client.GetStringAsync(url);
Console.WriteLine($"{DateTime.Now}:{html}");
if (cancellationToken.IsCancellationRequested)
{
Console.WriteLine("请求被取消!");
break;
}
}
}
}
接着我们改变下需求,要求一秒钟后抛出异常,代码可以这样写
static async Task DownloadHtml(string url, int n, CancellationToken cancellationToken)
{
using(HttpClient client = new HttpClient())
{
for(var i = 0; i < n; i++)
{
string html = await client.GetStringAsync(url);
Console.WriteLine($"{DateTime.Now}:{html}");
cancellationToken.ThrowIfCancellationRequested();
}
}
}
当然还有一种方式是利用了GetAsync()
方法的
static async Task DownloadHtml(string url, int n, CancellationToken cancellationToken)
{
using (HttpClient client = new HttpClient())
{
for (var i = 0; i < n; i++)
{
var resp = await client.GetAsync(url, cancellationToken);
string html = await resp.Content.ReadAsStringAsync();
Console.WriteLine($"{DateTime.Now}:{html}");
}
}
}
那么这两种方式有什么区别呢?如果网站下载特别慢,对于第一种方式要下载完网页才会执行抛出异常的语句,实际上一秒钟后不一定会抛出异常;而第二种方式,则一秒钟后一定会抛出异常。
Task类的重要方法:
Task<Task> WhenAny(IEnumerable<Task> tasks)
等,任何一个Task完成,Task就完成。Task<TResult[]> WhenAll<TResult>(params Task<TResult>[] tasks)
等,所有Task完成,Task才完成。用于等待多个任务执行结束但是不在乎它们的执行顺序。FromResult()
创建普通数值的Task对象在这里我们主要来看WhenAll的使用
static async Task Main(string[] args)
{
Task<string> t1 = File.ReadAllTextAsync(@"test1.txt");
Task<string> t2 = File.ReadAllTextAsync(@"test2.txt");
Task<string> t3 = File.ReadAllTextAsync(@"test3.txt");
string[] strs = await Task.WhenAll(t1, t2, t3);
for (var i = 0; i < 3; i++)
Console.WriteLine(strs[i]);
}
async是编译器为异步方法中await代码进行分段处理的,而一个异步方法是否修饰了async对于调用者来讲没有区别,因此对于接口中的方法或者抽象方法不能修饰为async。
interface ITest
{
Task<int> GetCharCount(string file); //正确
async Task<int> GetCharCountAsync(string file); //错误,接口中的方法不能用async修饰
}
class Test : ITest
{
public async Task<int> GetCharCount(string file)
{
string s = await File.ReadAllTextAsync(file);
return s.Length;
}
}
yield不仅能简化数据的返回,而且还可以让数据处理“流水线化”提升性能。
关于yield的使用可以参考yield 上下文关键字 - C# 参考 | Microsoft Docs 和 C#中yield用法 - 大西瓜3721 - 博客园
在旧版C#中,async方法中不能用yield。从C#8.0开始,把返回值声明为async IAsyncEnumerable
(不要带Task)然后遍历的时候用await foreach()
即可。
static async Task Main(string[] args)
{
await foreach (var s in Test()) //注意await
Console.WriteLine(s);
}
static async IAsyncEnumerable<string> Test() //注意没Task
{
yield return "hello";
yield return "world";
}
在ASP.Net Core和控制台项目中没有SynchronizationContext
因此不用去管ConfigureAwait(false)
等。
在开发时不要把同步方法和异步方法混用。
异步方法的基本内容大概就这些了,本文章可以看作教程同时也是笔者的学习笔记,感谢 杨中科老师提供的.Net Core课程。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章