Author:萌狼蓝天
【哔哩哔哩】萌狼蓝天
【博客】https://mllt.cc
【博客园】萌狼蓝天 - 博客园
【微信公众号】mllt9920
【学习交流QQ群】238948804
目录
@萌狼蓝天
【!】启动spark集群
【!】启动
spark-shell
spark2.0将spark context 和hive context集成到了spark session
spark也可以作为程序入口
spark用scala编程
它是集群节点上的不可改变的、已分区的集合对象;
启动spark-shell
val list = List(1,2,3)
var rdd = sc.parallelize(list)
rdd.partitions.size
cd /home
mkdir data
touch a.txt
val localrdd = sc.textFile("file:///home/用户名/data/a.txt")
路径前面加
file://
表示从本地文件系统读取
localrdd.collect//返回RDD中所有的元素
注意:若在完全分布式spark-shell模式下,该文件需要在所有节点的相同位置保存才可以被读取,否则会报错“文件不存在”
hdfs dfs -mkdir /zwj25
hdfs dfs -ls /
访问 http://[IP]:50070
hdfs dfs -put file.txt /zwj25
var hdfsrdd=sc.textFile("/zwj25/file.txt")
hdfsrdd.collect
hdfsrdd.partitions
hdfsrdd.partitions.size
sc.defaultMinPartitions=min(sc.defaultParallelism,2)
rdd分区数=max(hdfs文件的block数目,sc.defaultMinPartitions)
类型:Transformation类型算子
map: 将原来RDD的每个数据项通过map中的用户自定义函数f转换成一个新的RDD,map操作不会改变RDD的分区数目
filter(func)
Transformation类型算子
保留通过函数func,返回值为true的元素,组成新的RDD
eg:过滤掉data RDD中元素小于或等于2的元素
val data =sc.parallelize(List(1,2,3,4))
val result = data.filter(x=>x>2)
result.collect
类型:Transformation类型算子
flatMap:对集合中的每个元素进行map操作再扁平化
val data = sc.parallelize(List("I am Meng Lang Lan Tian","my wechat is mllt9920"))
data.map(x=>x.split(" ")).collect
data.flatMap(x=>x.split(" ")).collect
sortBy(f:(T) => K, ascending, numPartitions)
类型:Transformation类型算子
作用:对标准RDD进行排序
sortBy()
可接受三个参数:
f:(T) => K
:左边是要被排序对象中的每一个元素,右边返回的值是元素中要进行排序的值。
ascending
:决定排序后RDD中的元素是升序还是降序,默认是true,也就是升序,false为降序排序。
numPartitions
:该参数决定排序后的RDD的分区个数,默认排序后的分区个数和排序之前的个数相等。
eg:按照每个元素的第二个值进行降序排序,将得到的结果存放到RDD "data2" 中
val data1 = sc.parallelize(List((1,3),(2,4),(5,7),(6,8)))
val data2 = data1.sortBy(x=>x._2,false,1)
val data3 = data1.sortBy(x=>x._1,false,1)
distinct([numPartitions]))
类型:Transformation类型算子
作用:去重。针对RDD中重复的元素,只保留一个元素
eg:
val data1 = sc.parallelize(List(1,2,3,3,3,4,4))
data1.collect
data1.distinct.collect
data1.collect
union(otherDataset)
作用:合并RDD,需要保证两个RDD元素类型一致
eg:合并rdd1和rdd2
val rdd1 = sc.parallelize(List(1,2,3))
val rdd2 = sc.parallelize(List(4,5,6))
rdd1.union(rdd2).collect
注意:union两个RDD元素类型要一致
intersection(otherDataset)
作用:找出两个RDD的共同元素,也就是找出两个RDD的交集
eg:找出c_rdd1和c_rdd2中相同的元素
val c_rdd1 = sc.parallelize(List(('a',1),('b',2),('a',1),('c',1)))
val c_rdd2 = sc.parallelize(List(('a',1),('b',1),('d',1),('e',1)))
c_rdd1.intersection(c_rdd2).collect
subtract (otherDataset)
作用:获取两个RDD之间的差集
eg:找出rdd1与rdd2之间的差集
val rdd1 = sc.parallelize(Array("A","B","C","D"))
val rdd2 = sc.parallelize(Array("C","D","E","F"))
val subtractRDD = rdd1.subtract(rdd2)
subtractRDD.collect
cartesian(otherDataset)
名称:笛卡尔积
作用:将两个集合的元素两两组合成一组
eg:
val rdd01 = sc.makeRDD(List(1,3,5,3))
val rdd02 = sc.makeRDD(List(2,4,5,1))
rdd01.cartesian(rdd02).collect
返回RDD前面num条记录
val data = sc.parallelize(List(1,2,3,4))
data.take(2)
val rdd = sc.parallelize(List("a","b","c","d"))
//通过map创建键值对
var rddp = rdd.map(x=>(x,1))
rddp.collect
rddp.keys.collect
rddp.values.collect
//通过mapValues让所有Value值加一
rddp.mapValues(x=>x+1).collect
val rdd1 = sc.parallelize(List("I am a student","Hello word","Just Play"))
val rdd2 = rdd1.map(x=>(x,992))
rdd2.collect
rdd2.keys.collect
rdd2.values
rdd2.values.collect
val rdd3 = sc.parallelize(List("I am a student","Hello word","Just Play"))
val rdd4 = rdd1.map(x=>x.split(" "))
rdd4.collect
val p1=rdd4.map(x=>(x.split(" "),x))
p1.collect
val rdd = sc.parallelize(List("a","b","c","d"))
//通过map创建键值对
var rddp = rdd.map(x=>(x,1))
//通过mapValues让所有Value值加一
var rdd1 = rddp.mapValues(x=>x+1)
//同理得到rdd2
val rdd2 = sc.parallelize(List("a","b","c","d","e")).map(x=>(x,1))
rdd1.collect
rdd2.collect
//使用join将rdd1和rdd2连接起来
rdd1.join(rdd2).collect
rdd2.join(rdd1).collect
rightOuterJoin 右外连接。第二个RDD的键必须存在
leftOuterJoin 左外连接。第一个RDD的键必须存在
fullOuterJoin 全外连接。两个键都要有
//rdd1和rdd2延用上方的
rdd1.collect
rdd2.collect
//右外连接
rdd1.rightOuterJoin(rdd2).collect
//左外连接
rdd1.leftOuterJoin(rdd2).collect
//全外连接
rdd1.fullOuterJoin(rdd2).collect
作用:组合两个RDD为键值对RDD
- 两个RDD的分区数必须相同(查询分区数rdd.partitions.size)
- 两个RDD的元素个数必须相同
val rdd1 = sc.parallelize(1 to 3)
val rdd2 = sc.parallelize(List("a","b","c"))
rdd1.collect
rdd2.collect
rdd2.zip(rdd1).collect
rdd1.zip(rdd2).collect
rdd1.partitions.size
rdd2.partitions.size
val rdd3 = sc.parallelize(1 to 3,3)//3是指的分区数
val rdd4 = sc.parallelize(List("a","b","c"),3)//3是指的分区数
rdd3.partitions.size
rdd4.partitions.size
合并相同键的值,合并后值的类型可以不同
目标:想将值转换为List类型
按键分组,在(K,V)对组成的RDD上调用时,返回(K,Iterable)对组成的新的RDD。
val rdd1 = sc.parallelize(List("A","B","C","C","C","D","D")).map(x=>(x,1))
rdd1.groupByKey().collect
rdd1.groupByKey().collect()
将键值对RDD按键分组后进行聚合(Key相同,则只保留一个Key,值+1)
当在(K,V)类型的键值对组成的RDD上调用时,返回一个(K,V)类型键值对组成的新RDD
其中新RDD每个键的值使用给定的reduce函数func进行聚合,该函数必须是(V,V)=>V类型
可用来统计每个键出现的次数
val rdd1 = sc.parallelize(List("A","B","C","C","C","D","D")).map(x=>(x,1))
rdd1.reduceByKey((x,y)=>x+y).collect
rdd1.reduceByKey((x,y)=>x+y).collect()
结构名称
结构化
描述
文本文件
否
普通文本文件,每一行一条记录
SequenceFile
是
用于键值对数据的常见Hadoop文件格式
rdd.partitions.size
把RDD保存到HDFS中
val rdd1 = sc.parallelize(List(1,2,3,4))
rdd1.saveAsTextFile("/302Spark/savetext")
//输入IP:50070 查询
saveAsSequenceFile(Path:String)
序列化文件,仅支持键值对RDD
sequenceFile[K, V](path: String, keyClass: Class[K], valueClass: Class[V], minPartitions: Int)
读序列化文件:
//为了让Spark支持Hadoop的数据类型,需要导包
import org.apache.hadoop.io.
sc.sequenceFile(Path:String,KeyClass:key[K])
实例
//序列化文件储存
val rdd = sc.parallelize(List(("panda",3),("dog",6),("cat",3)))
rdd.saveAsSequenceFile("/hadoop-zwj25/testSeq")
rdd.partitions.size
//查看序列化文件
hdfs dfs -ls /hadoop-zwj25
hdfs dfs -ls /hadoop-zwj25/testSeq
hdfs dfs -cat /hadoop-zwj25/testSeq/part-00000
//引入hadoop数据类型
import org.apache.hadoop.io.Text
import org.apache.hadoop.io.IntWritable
//序列化文件读取
//第1个classOf[Text]中的Text是键的类型
//第2个classOf[IntSWritable]中的IntSWritable是值的类型
val output = sc.sequenceFile("/hadoop-zwj25/testSeq",classOf[Text],classOf[IntWritable])
output.map{case(x,y)=>(x.toString,y.get())}.collect
rdd.collect
val rddtest = sc.parallelize(List(1,2,3))
rddtest.map{case 1=>"One";case 2=>"Two";case _=>"other"}.collect
rddtest.map{case x=>(x,"a")}.collect
repartition(numPartitions: Int)
- 可以增加或减少此RDD中的并行级别。在内部,它使用shuffle重新分发数据。
- 如果要减少此RDD中的分区数,请考虑使用coalesce,这样可以避免执行shuffle。
coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
查询分区:partitions.size
rdd.repartition(numPartitions:Int).partitions.size
减少分区数,请考虑使用coalesce,这样可以避免执行
val rdd1 = sc.parallelize(List(1,2,3,4))
rdd1.saveAsTextFile("/302Spark/savetext")
//输入IP:50070 查询
//---------------------------------------
rdd1.partitions.size
rdd1.repartition(1).partitions.size
rdd1.repartition(1).saveAsTextFile("/302Spark/savetext1")
找出考试成绩得过100分的学生ID,最终的结果需要集合到一个RDD中。
请将下面代码块中内容粘贴到文本文档result_bigdata.txt中
1001 大数据基础 90
1002 大数据基础 94
1003 大数据基础 100
1004 大数据基础 99
1005 大数据基础 90
1006 大数据基础 94
1007 大数据基础 100
1008 大数据基础 93
1009 大数据基础 89
1010 大数据基础 78
1011 大数据基础 91
1012 大数据基础 84
//从本地文件创建RDD
val rdd_bigdata = sc.textFile("file:///home/用户名/result_bigdata.txt")
//随便输出一个测试
rdd_bigdata.take(2)
//查看所有结果
rdd_bigdata.collect
//下面这种方法需要转为Int型
val bigdata_100=rdd_bigdata.map(x=>x.split("\t")).map(x=>(x(0),x(1),x(2).toInt)).filter(x=>x._3==100).map(x=>x._1)
bigdata_100.collect
//下面这种方法无需转为Int型
val bigdata_100=rdd_bigdata.map(x=>x.split("\t")).filter(x=>x(2)=="100").map(x=>x(0))
bigdata_100.collect
输出每位学生的总成绩,要求将两个成绩表中学生ID相同的成绩相加。
请将下面代码块中内容粘贴到文本文档score.txt中
math John 90
math Betty 88
math Mike 95
math Lily 92
chinese John 78
chinese Betty 80
chinese Mike 88
chinese Lily 85
english John 92
english Betty 84
english Mike 90
english Lily 85
请将下面代码块中内容粘贴到文本文档result_math.txt中
1001 应用数学 96
1002 应用数学 94
1003 应用数学 100
1004 应用数学 100
1005 应用数学 94
1006 应用数学 80
1007 应用数学 90
1008 应用数学 94
1009 应用数学 84
1010 应用数学 86
1011 应用数学 79
1012 应用数学 91
请将下面代码块中内容粘贴到文本文档result_bigdata.txt中
1001 大数据基础 90
1002 大数据基础 94
1003 大数据基础 100
1004 大数据基础 99
1005 大数据基础 90
1006 大数据基础 94
1007 大数据基础 100
1008 大数据基础 93
1009 大数据基础 89
1010 大数据基础 78
1011 大数据基础 91
1012 大数据基础 84
//从本地文件创建RDD
val rdd_bigdata = sc.textFile("file:///home/hadoop-zwj25/result_bigdata.txt")
val rdd_math = sc.textFile("file:///home/hadoop-zwj25/result_math.txt")
//返回RDD中所有的元素
rdd_bigdata.collect
rdd_math.collect
//合并两个RDD
val rddall = rdd_math.union(rdd_bigdata)
rddall.collect
rddall.map(x=>(x.split("\t"))).map(x=>(x(0),x(2).toInt)).reduceByKey((x,y)=>x+y).collect
1.输出每位同学的平均成绩,要求将两个成绩表中学生ID相同的成绩相加并计算出平均分。
2.合并每位同学的总成绩和平均成绩
完成平均分及合并任务
//1.创建RDD并转换
val math_map = math.map(x=>x.split("\t")).map(x=>(x(0),x(2).toInt))
math_map.collect
val bigdata=sc.textFile("file:///home/hadoop-zwj25/result_bigdata.txt")
val bigdata_map = bigdata.map(x=>x.split("\t")).map(x=>(x(0),x(2).toInt))
bigdata_map.collect
//将两个键值对RDD合并,使用take随机测试一个
math_map.union(bigdata_map).take(3)
//为成绩添加成绩计数,从1开始,完成后的格式是 (ID,(成绩,计数))
math_map.union(bigdata_map).mapValues(x=>(x,1)).take(3)
//注意,转换后的类型需和原值类型保持一致
//reduceByKey((x,y)=>((x._1+y._1),(x._2+y._2)))解释如下
//x是原来的成绩,y是计数的
//(x._1+y._1)代表总成绩(两门学科成绩相加)
//(x._2+y._2)代表总门数(两个计数值相加)
math_map.union(bigdata_map).mapValues(x=>(x,1)).reduceByKey((x,y)=>((x._1+y._1),(x._2+y._2))).take(3)
//将合并后RDD按键 分组 并 聚合
//平均成绩为 总成绩/学科数
//x_1是ID ; x._2 是(成绩,计数值)
//所以求平均成绩为 (x._2._1/x._2._2)
val pj = math_map.union(bigdata_map).mapValues(x=>(x,1)).reduceByKey((x,y)=>((x._1+y._1),(x._2+y._2))).map(x=>(x._1,(x._2._1/x._2._2)))
//查询结果
pj.collect
//输出总成绩
val zf = math_map.union(bigdata_map).reduceByKey((x,y)=>x+y)
zf.collect
pj.count
zf.count
//合并每个学生的总分与平均分
zf.join(pj).count
手机扫一扫
移动阅读更方便
你可能感兴趣的文章