代码随想录算法训练营Day31 贪心算法| 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和
阅读原文时间:2023年07月16日阅读:1

代码随想录算法训练营

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

贪心的套路(什么时候用贪心)

贪心算法并没有固定的套路

所以唯一的难点就是如何通过局部最优,推出整体最优。

靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。

有同学问了如何验证可不可以用贪心算法呢?

最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧

可有有同学认为手动模拟,举例子得出的结论不靠谱,想要严格的数学证明。

一般数学证明有如下两种方法:

  • 数学归纳法

  • 反证法

    看教课书上讲解贪心可以是一堆公式,估计大家连看都不想看,所以数学证明就不在我要讲解的范围内了,大家感兴趣可以自行查找资料。

    面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了

贪心一般解题步骤

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题

  • 找出适合的贪心策略

  • 求解每一个子问题的最优解

  • 将局部最优解堆叠成全局最优解

    这个四步其实过于理论化了,我们平时在做贪心类的题目 很难去按照这四步去思考,真是有点“鸡肋”。

    做题的时候,只要想清楚 局部最优 是什么,如果推导出全局最优,其实就够了。

题目链接:455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。

总体思路

优先大饼干

由于大饼干都可以满足胃口大的孩子和胃口小的孩子,所以大饼干应该优先满足胃口大的,同时保证能够满足最多的孩子。如图:

C++整体代码如下:

// 版本一
// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};

优先小饼干

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};

注意事项

注意版本一的代码中,可以看出来,是先遍历的胃口,在遍历的饼干,那么可不可以 先遍历 饼干,在遍历胃口呢?

其实是不可以的。

外面的for 是里的下标i 是固定移动的,而if里面的下标 index 是符合条件才移动的。

如果 for 控制的是饼干, if 控制胃口,就是出现如下情况 :

if 里的 index 指向 胃口 10, for里的i指向饼干9,因为 饼干9 满足不了 胃口10,所以 i 持续向前移动,而index 走不到 s[index] >= g[i] 的逻辑,所以index不会移动,那么当i 持续向前移动,最后所有的饼干都匹配不上。

所以 一定要for 控制 胃口,里面的if控制饼干。

题目链接:376. 摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列

总体思路

本题要求通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

相信这么一说吓退不少同学,这要求最大摆动序列又可以修改数组,这得如何修改呢?

来分析一下,要求删除元素使其达到最大摆动序列,应该删除什么元素呢?

用示例二来举例,如图所示:

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

局部最优推出全局最优,并举不出反例,那么试试贪心!

(为方便表述,以下说的峰值都是指局部峰值)

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

在计算是否有峰值的时候,大家知道遍历的下标i ,计算prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

情况一:上下坡中有平坡

例如 [1,2,2,2,1]这样的数组,如图:

它的摇摆序列长度是多少呢? 其实是长度是3,也就是我们在删除的时候 要不删除左面的三个2,要不就删除右边的三个2。

如图,可以统一规则,删除左边的三个2:

在图中,当i指向第一个2的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个2的时候 prediff = 0 && curdiff < 0

如果我们采用,删左面三个2的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端

所以本题统计峰值的时候,数组最左面和最右面如果统计呢?

题目中说了,如果只有两个不同的元素,那摆动序列也是2。

例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。

因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。

这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为2。

不写死的话,如果和我们的判断规则结合在一起呢?

可以假设,数组最前面还有一个数字,那这个数字应该是什么呢?

之前我们在 讨论 情况一:相同数字连续 的时候, prediff = 0 ,curdiff < 0 或者 >0 也记为波谷。

那么为了规则统一,针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即preDiff = 0,如图:

针对以上情形,result初始为1(默认最右面有一个峰值),此时curDiff > 0 && preDiff <= 0,那么result++(计算了左面的峰值),最后得到的result就是2(峰值个数为2即摆动序列长度为2)

经过以上分析后,我们可以写出如下代码:

// 版本一
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
            }
            preDiff = curDiff;
        }
        return result;
    }
};

此时大家是不是发现 以上代码提交也不能通过本题?

所以此时我们要讨论情况三!

情况三:单调坡度有平坡

在版本一中,我们忽略了一种情况,即 如果在一个单调坡度上有平坡,例如[1,2,2,2,3,4],如图:

图中,我们可以看出,版本一的代码在三个地方记录峰值,但其实结果因为是2,因为 单调中的平坡 不能算峰值(即摆动)。

之所以版本一会出问题,是因为我们实时更新了 prediff。

那么我们应该什么时候更新prediff呢?

我们只需要在 这个坡度 摆动变化的时候,更新prediff就行,这样prediff在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

所以本题的最终代码为:

// 版本二
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

题目链接:53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

贪心解法

贪心贪的是哪里呢?

如果 -2 1 在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。

这相当于是暴力解法中的不断调整最大子序和区间的起始位置

那有同学问了,区间终止位置不用调整么? 如何才能得到最大“连续和”呢?

区间的终止位置,其实就是如果count取到最大值了,及时记录下来了。例如如下代码:

if (count > result) result = count;

这样相当于是用result记录最大子序和区间和(变相的算是调整了终止位置)

如动画所示:

红色的起始位置就是贪心每次取count为正数的时候,开始一个区间的统计。

那么不难写出如下C++代码(关键地方已经注释)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

常见误区

误区一:

不少同学认为 如果输入用例都是-1,或者 都是负数,这个贪心算法跑出来的结果是0, 这是又一次证明脑洞模拟不靠谱的经典案例,建议大家把代码运行一下试一试,就知道了,也会理解 为什么 result 要初始化为最小负数了。

误区二:

大家在使用贪心算法求解本题,经常陷入的误区,就是分不清,是遇到 负数就选择起始位置,还是连续和为负选择起始位置。

在动画演示用,大家可以发现, 4,遇到 -1 的时候,我们依然累加了,为什么呢?

因为和为3,只要连续和还是正数就会 对后面的元素 起到增大总和的作用。 所以只要连续和为正数我们就保留。

这里也会有录友疑惑,那 4 + -1 之后 不就变小了吗? 会不会错过 4 成为最大连续和的可能性?

其实并不会,因为还有一个变量result 一直在更新 最大的连续和,只要有更大的连续和出现,result就更新了,那么result已经把4更新了,后面 连续和变成3,也不会对最后结果有影响。