动量法应用NASA测试不同飞机机翼噪音
阅读原文时间:2023年09月09日阅读:1

%matplotlib inline
from mxnet import nd
import numpy as np
from mxnet import autograd,gluon,init,nd
from mxnet.gluon import nn,data as gdata,loss as gloss
import time

def get_data():
data = np.genfromtxt('./data/airfoil_self_noise.dat', delimiter='\t')
data = (data - data.mean(axis=0)) / data.std(axis=0)
return nd.array(data[:1500, :-1]), nd.array(data[:1500, -1])

features, labels = get_data()
features[0]
labels[0]

定义网络

def linreg(X,w,b):
return nd.dot(X,w) + b

平方损失

def squared_loss(y_hat,y):
return (y_hat - y.reshape(y_hat.shape))**2/2

初始化参数

def init_momentum_states():
v_w = nd.zeros((features.shape[1], 1))
v_b = nd.zeros(1)
return (v_w, v_b)

params [w,b]

states [v_w,v_b] 初始化状态

hyperparams {'lr':0.02,'momentum':0.5}

def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):
v[:] = hyperparams['momentum'] * v + hyperparams['lr'] * p.grad
p[:] -= v

def train(trainer_fn, states, hyperparams, features, labels,
batch_size=10, num_epochs=2):
# 初始化模型。
net, loss = gb.linreg, gb.squared_loss
w = nd.random.normal(scale=0.01, shape=(features.shape[1], 1))
b = nd.zeros(1)
w.attach_grad()
b.attach_grad()

def eval\_loss():  
    return loss(net(features, w, b), labels).mean().asscalar()

ls = \[eval\_loss()\]  
data\_iter = gdata.DataLoader(  
    gdata.ArrayDataset(features, labels), batch\_size, shuffle=True)  
for \_ in range(num\_epochs):  
    start = time.time()  
    for batch\_i, (X, y) in enumerate(data\_iter):  
        with autograd.record():  
            l = loss(net(X, w, b), y).mean()  # 使用平均损失。  
        l.backward()  
        trainer\_fn(\[w, b\], states, hyperparams)  # 迭代模型参数。  
        if (batch\_i + 1) \* batch\_size % 100 == 0:  
            ls.append(eval\_loss())  # 每 100 个样本记录下当前训练误差。  
# 打印结果和作图。  
print('loss: %f, %f sec per epoch' % (ls\[-1\], time.time() - start))  
gb.set\_figsize()  
gb.plt.plot(np.linspace(0, num\_epochs, len(ls)), ls)  
gb.plt.xlabel('epoch')  
gb.plt.ylabel('loss')

train(trainer_fn=sgd_momentum,states= init_momentum_states(),hyperparams={'lr': 0.02, 'momentum': 0.5}, features=features, labels=labels)

train(sgd_momentum,init_momentum_states(),{'lr':0.02,'momentum':0.9},features,labels)

train(sgd_momentum,init_momentum_states(),{'lr':0.004,'momentum':0.9},features,labels)

gluon 版:

def train_gluon(trainer_name,trainer_hyperparams,features,labels,batch_size=10,num_epochs=2):
# 初始化模型
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
loss = gloss.L2Loss()

def eval\_loss():  
    return loss(net(features),labels).mean().asscalar()

ls = \[eval\_loss()\]  
data\_iter = gdata.DataLoader(gdata.ArrayDataset(features,labels),batch\_size,shuffle=True)

# 创建 Trainer 实例迭代模型参数  
trainer = gluon.Trainer(net.collect\_params(),trainer\_name,trainer\_hyperparams)

for \_ in range(num\_epochs):  
    start = time.time()  
    for batch\_i, (X,y) in enumerate(data\_iter):  
        with autograd.record():  
            l = loss(net(X),y)  
        l.backward()  
        trainer.step(batch\_size)  
        if (batch\_i + 1) \* batch\_size % 100 ==0:  
            ls.append(eval\_loss())

# 打印结果和作图。  
print('loss: %f, %f sec per epoch' % (ls\[-1\], time.time() - start))  
gb.set\_figsize()  
gb.plt.plot(np.linspace(0, num\_epochs, len(ls)), ls)  
gb.plt.xlabel('epoch')  
gb.plt.ylabel('loss')

train_gluon('sgd',{'learning_rate':0.004,'momentum':0.9},features,labels)