Solution -「UOJ #87」mx 的仙人掌
阅读原文时间:2023年07月10日阅读:3

\(\mathcal{Description}\)

  Link.

  给出含 \(n\) 个结点 \(m\) 条边的仙人掌图。\(q\) 次询问,每次询问给出一个点集 \(S\),求 \(S\) 内两两结点最短距离的最大值。

  \(n,\sum|S|\le3\times10^5\)。

\(\mathcal{Solution}\)

  圆方树 + 虚树 = 虚圆方树!

  首先,考虑对于整个仙人掌怎么求答案:建出圆方树,DP 记录子树最深结点深度,在方点处单调队列合并圆儿子的两条链贡献答案即可。

  接下来,只需要把“虚圆方树”给弄出来就好。关键即在于满足方点周围一定裹着它自己管辖的圆点的性质,那么在建虚树边时特殊考虑一下就完成啦。

/* Clearink */

#include <cstdio>
#include <vector>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )

inline char fgc() {
    static char buf[1 << 17], *p = buf, *q = buf;
    return p == q && ( q = buf + fread( p = buf, 1, 1 << 17, stdin ), p == q )
        ? EOF : *p++;
}

inline int rint() {
    int x = 0; char s = fgc();
    for ( ; s < '0' || '9' < s; s = fgc() );
    for ( ; '0' <= s && s <= '9'; s = fgc() ) x = x * 10 + ( s ^ '0' );
    return x;
}

template<typename Tp>
inline void wint( Tp x ) {
    if ( x < 0 ) putchar( '-' ), x = -x;
    if ( 9 < x ) wint( x / 10 );
    putchar( x % 10 ^ '0' );
}

typedef long long LL;

template<typename Tp>
inline void chkmin( Tp& a, const Tp b ) { b < a && ( a = b ); }
template<typename Tp>
inline void chkmax( Tp& a, const Tp b ) { a < b && ( a = b ); }
inline LL lmin( const LL a, const LL b ) { return a < b ? a : b; }

const int MAXN = 3e5, MAXM = MAXN << 1, MAXLG = 20;
const LL LINF = 1ll << 60;
int n, m;

template<const int NODE, const int EDGE>
struct Graph {
    int ecnt, head[NODE], to[EDGE], nxt[EDGE];
    LL len[EDGE];
    Graph(): ecnt( 1 ) {}

    inline void operator () ( const int s, const int t, const LL w ) {
        #ifdef RYBY
            printf( "%d %d %lld\n", s, t, w );
        #endif
        to[++ecnt] = t, len[ecnt] = w, nxt[ecnt] = head[s], head[s] = ecnt;
    }
};
#define adj( t, u, v ) \
    for ( int e = t.head[u], v; v = t.to[e], e; e = t.nxt[e] )

Graph<MAXN + 5, MAXM * 2 + 5> src;

int vnode, dfc, dfn[MAXN * 2 + 5], low[MAXN + 5];
LL pre[MAXN * 2 + 5];
Graph<MAXN * 2 + 5, MAXN * 2 + 5> cac;

inline void buildCactus( const int u, const int f ) {
    static int top = 0, stk[MAXN + 5];
    dfn[u] = low[u] = ++dfc, stk[++top] = u;
    adj( src, u, v ) if ( v != f ) {
        if ( !dfn[v] ) {
             buildCactus( v, u );
             chkmin( low[u], low[v] );

             if ( low[v] >= dfn[u] ) {
                cac( u, ++vnode, 0 ), pre[vnode] = src.len[e];
                int las = u, ttop = top, cnt = 0;
                do {
                    int w = stk[top];
                    for ( int i = src.head[w]; i; i = src.nxt[i] ) {
                        if ( i ^ e ^ 1 && src.to[i] == las ) {
                            ++cnt;
                            pre[w] = pre[las] + src.len[i];
                            pre[vnode] += src.len[i];
                            break;
                        }
                    }
                    las = w;
                } while ( stk[top--] != v );

                do {
                    int w = stk[ttop];
                    cac( vnode, w, cnt ?
                        lmin( pre[w], pre[vnode] - pre[w] ) : pre[vnode] );
                } while ( stk[ttop--] != v );
             }
        } else chkmin( low[u], dfn[v] );
    }
}

// `dfc` and `dfn` was used by `buildCactus`, pay attention.
int dep[MAXN * 2 + 5], fa[MAXN * 2 + 5][MAXLG + 5];
LL dis[MAXN * 2 + 5];

inline void initCactus( const int u ) {
    dfn[u] = ++dfc;
    for ( int i = 1; fa[u][i - 1]; fa[u][i] = fa[fa[u][i - 1]][i - 1], ++i );
    adj( cac, u, v ) {
        dep[v] = dep[u] + 1, dis[v] = dis[u] + cac.len[e], fa[v][0] = u;
        initCactus( v );
    }
}

inline int lca( int u, int v ) {
    if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
    per ( i, MAXLG, 0 ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
    if ( u == v ) return u;
    per ( i, MAXLG, 0 ) if ( fa[u][i] != fa[v][i] ) u = fa[u][i], v = fa[v][i];
    return fa[u][0];
}

inline int climb( int u, const int par ) {
    per ( i, MAXLG, 0 ) if ( dep[fa[u][i]] > dep[par] ) u = fa[u][i];
    return u;
}

Graph<MAXN * 2 + 5, MAXN * 2 + 5> virc;

inline void vlink( int s, int t ) {
    // s is t's ancestor in cactus tree.
    if ( s > n ) {
        int is = climb( t, s );
        virc( s, is, dis[is] - dis[s] ), s = is;
    }
    if ( t > n ) {
        virc( fa[t][0], t, dis[t] - dis[fa[t][0]] ), t = fa[t][0];
    }
    if ( s != t ) virc( s, t, dis[t] - dis[s] );
}

inline void buildVirCac( std::vector<int>& vec ) {
    static int top, stk[MAXN * 2 + 5];
    virc.ecnt = 0, stk[top = 1] = 1;

    std::sort( vec.begin(), vec.end(), []( const int a, const int b ) {
        return dfn[a] < dfn[b];
    } );

    for ( int u: vec ) if ( u != 1 ) {
        int anc = lca( stk[top], u );
        while ( dep[stk[top]] > dep[anc] ) {
            int a = stk[top--], b = dep[stk[top]] < dep[anc] ? anc : stk[top];
            vlink( b, a );
        }
        if ( stk[top] != anc ) stk[++top] = anc;
        stk[++top] = u;
    }

    while ( top > 1 ) {
        int a = stk[top--], b = stk[top];
        vlink( b, a );
    }
}

LL ans, f[MAXN * 2 + 5];
bool book[MAXN + 5];

inline void contri( const int u, const std::vector<int>& cir ) {
    static int que[MAXN + 5], hd, tl;
    int sz = int( cir.size() ); LL half = pre[u] >> 1;

#define val( i ) ( pre[cir[i]] + ( i >= sz >> 1 ? pre[u] : 0 ) )

    que[hd = tl = 1] = 0;
    rep ( i, 1, sz - 1 ) {
        while ( hd <= tl && val( i ) - val( que[hd] ) > half ) ++hd;

        if ( hd <= tl ) {
            chkmax( ans, f[cir[que[hd]]] - val( que[hd] )
                + f[cir[i]] + val( i ) );
        }

        while ( hd <= tl && f[cir[que[tl]]] - val( que[tl] )
            <= f[cir[i]] - val( i ) ) --tl;
        que[++tl] = i;
    }

#undef val
}

inline void solve( const int u, const int par ) {
    f[u] = -LINF;
    adj( virc, u, v ) solve( v, u );
    if ( u <= n ) {
        LL mx = book[u] ? 0 : -LINF, sx = -LINF;
        adj( virc, u, v ) {
            if ( LL d = f[v] + virc.len[e]; d > mx ) sx = mx, mx = d;
            else if ( d > sx ) sx = d;
        }
        chkmax( ans, mx + sx ), f[u] = mx;
    } else {
        static std::vector<int> cir; cir.clear();

        LL tmpp = pre[par]; pre[par] = 0;
        cir.push_back( par );
        adj( virc, u, v ) cir.push_back( v );
        int sz = int( cir.size() );
        cir.resize( sz << 1 );
        rep ( i, 0, sz - 1 ) cir[sz + i] = cir[i];

        contri( u, cir );
        pre[par] = tmpp;

        adj( virc, u, v ) chkmax( f[u], f[v] + virc.len[e] );
    }
    virc.head[u] = 0;
}

int main() {
    n = rint(), m = rint();
    rep ( i, 1, m ) {
        int u = rint(), v = rint(), w = rint();
        src( u, v, w ), src( v, u, w );
    }

    #ifdef RYBY
        puts( "+++ +++ +++" );
    #endif

    vnode = n, buildCactus( 1, 0 );
    dfc = 0, dep[1] = 1, initCactus( 1 );

    #ifdef RYBY
        puts( "--- --- ---" );
    #endif

    std::vector<int> vec;
    for ( int q = rint(), k; q--; vec.clear() ) {
        k = rint(), vec.resize( k );
        rep ( i, 0, k - 1 ) book[vec[i] = rint()] = true;
        buildVirCac( vec );

        ans = 0, solve( 1, 0 );
        wint( ans ), putchar( '\n' );

        for ( int u: vec ) book[u] = false;
    }

    return 0;
}