pd.concat, pd.append
import pandas as pd
from pandas import DataFrame
import numpy as np
pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:
objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False
匹配级联
df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
'group':['Accounting','Product','Marketing'],
'hire_date':[1998,2017,2018]})
df1
employee
group
hire_date
0
Bobs
Accounting
1998
1
Linda
Product
2017
2
Bill
Marketing
2018
pd.concat((df1,df1),axis=0)
employee
group
hire_date
0
Bobs
Accounting
1998
1
Linda
Product
2017
2
Bill
Marketing
2018
0
Bobs
Accounting
1998
1
Linda
Product
2017
2
Bill
Marketing
2018
不匹配级联
df2 = df1.copy()
df2.columns = ['employee','groupps','hire_date']
df2
employee
groupps
hire_date
0
Bobs
Accounting
1998
1
Linda
Product
2017
2
Bill
Marketing
2018
pd.concat((df1,df2),axis=0)
# 按列级联,发现不同列就加在表中,用NaN补全空的字段
employee
group
groupps
hire_date
0
Bobs
Accounting
NaN
1998
1
Linda
Product
NaN
2017
2
Bill
Marketing
NaN
2018
0
Bobs
NaN
Accounting
1998
1
Linda
NaN
Product
2017
2
Bill
NaN
Marketing
2018
join:
pd.concat((df1,df2),axis=0,join='inner')
employee
hire_date
0
Bobs
1998
1
Linda
2017
2
Bill
2018
0
Bobs
1998
1
Linda
2017
2
Bill
2018
append函数的使用: append只可以进行纵向的级联
employee
group
groupps
hire_date
0
Bobs
Accounting
NaN
1998
1
Linda
Product
NaN
2017
2
Bill
Marketing
NaN
2018
0
Bobs
NaN
Accounting
1998
1
Linda
NaN
Product
2017
2
Bill
NaN
Marketing
2018
merge与concat的区别在于,merge需要依据某一共同列来进行合并
使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。
注意每一列元素的顺序不要求一致
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering'],
})
df1
employee
group
0
Bob
Accounting
1
Jake
Engineering
2
Lisa
Engineering
df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
'hire_date':[2004,2008,2012],
})
df2
employee
hire_date
0
Lisa
2004
1
Bob
2008
2
Jake
2012
pd.merge(df1,df2,on='employee')
employee
group
hire_date
0
Bob
Accounting
2008
1
Jake
Engineering
2012
2
Lisa
Engineering
2004
df3 = DataFrame({
'employee':['Lisa','Jake'],
'group':['Accounting','Engineering'],
'hire_date':[2004,2016]})
df
employee
group
hire_date
0
Lisa
Accounting
2004
1
Jake
Engineering
2016
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
'supervisor':['Carly','Guido','Steve']
})
df4
group
supervisor
0
Accounting
Carly
1
Engineering
Guido
2
Engineering
Steve
pd.merge(df3,df4)
# 会默认以两个表的共同字段 group 进行关联,将两张表中的全部数据进行合并
employee
group
hire_date
supervisor
0
Lisa
Accounting
2004
Carly
1
Jake
Engineering
2016
Guido
2
Jake
Engineering
2016
Steve
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering']})
df1
employee
group
0
Bob
Accounting
1
Jake
Engineering
2
Lisa
Engineering
df5 = DataFrame({'group':['Engineering','Engineering','HR'],
'supervisor':['Carly','Guido','Steve']
})
df5
group
supervisor
0
Engineering
Carly
1
Engineering
Guido
2
HR
Steve
pd.merge(df1,df5,how='outer')
employee
group
supervisor
0
Bob
Accounting
NaN
1
Jake
Engineering
Carly
2
Jake
Engineering
Guido
3
Lisa
Engineering
Carly
4
Lisa
Engineering
Guido
5
NaN
HR
Steve
当列冲突时,即有多个列名称相同时,需要使用on=来指定哪一个列作为key,配合suffixes指定冲突列名
df1 = DataFrame({'employee':['Jack',"Summer","Steve"],
'group':['Accounting','Finance','Marketing']})
df1
employee
group
0
Jack
Accounting
1
Summer
Finance
2
Steve
Marketing
df2 = DataFrame({'employee':['Jack','Bob',"Jake"],
'hire_date':[2003,2009,2012],
'group':['Accounting','sell','ceo']})
df2
employee
group
hire_date
0
Jack
Accounting
2003
1
Bob
sell
2009
2
Jake
ceo
2012
pd.merge(df1,df2,on='group')
# 指定按照 group 这一列来进行分组,会将两个表中相同的字段名都加在合并后的表中,两个字段会改变
# 也可以通过这个 suffixes=('_x', '_y') 参数进行一个修改
employee_x
group
employee_y
hire_date
0
Jack
Accounting
Jack
2003
当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列作为连接的列
df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
'group':['Accounting','Product','Marketing'],
'hire_date':[1998,2017,2018]})
df1
employee
group
hire_date
0
Bobs
Accounting
1998
1
Linda
Product
2017
2
Bill
Marketing
2018
df5 = DataFrame({'name':['Lisa','Bobs','Bill'],
'hire_dates':[1998,2016,2007]})
df5
hire_dates
name
0
1998
Lisa
1
2016
Bobs
2
2007
Bill
pd.merge(df1,df5,left_on='employee',right_on='name',how='outer')
# 分别指定df1表中的employee字段和df5表中的name字段进行一个比对连接,
employee
group
hire_date
hire_dates
name
0
Bobs
Accounting
1998.0
2016.0
Bobs
1
Linda
Product
2017.0
NaN
NaN
2
Bill
Marketing
2018.0
2007.0
Bill
3
NaN
NaN
NaN
1998.0
Lisa
手机扫一扫
移动阅读更方便
你可能感兴趣的文章