3D MinkowskiEngine稀疏模式重建
本文看一个简单的演示示例,该示例训练一个3D卷积神经网络,该网络用一个热点向量one-hot vector重构3D稀疏模式。这类似于Octree生成网络ICCV'17。输入的one-hot vector一热向量,来自ModelNet40数据集的3D计算机辅助设计(CAD)椅子索引。
使用MinkowskiEngine.MinkowskiConvolutionTranspose和 MinkowskiEngine.MinkowskiPruning,依次将体素上采样2倍,然后删除一些上采样的体素,以生成目标形状。常规的网络体系结构看起来类似于下图,但是细节可能有所不同。
在继续之前,请先阅读训练和数据加载。
创建稀疏模式重建网络
要从矢量创建3D网格世界中定义的稀疏张量,需要从 1×1×1分辨率体素。本文使用一个由块MinkowskiEngine.MinkowskiConvolutionTranspose,MinkowskiEngine.MinkowskiConvolution和MinkowskiEngine.MinkowskiPruning。
在前进过程forward pass中,为1)主要特征和2)稀疏体素分类创建两条路径,以删除不必要的体素。
out = upsample_block(z)
out_cls = classification(out).F
out = pruning(out, out_cls > 0)
在输入的稀疏张量达到目标分辨率之前,网络会重复执行一系列的上采样和修剪操作,以去除不必要的体素。在下图上可视化结果。注意,最终的重建非常精确地捕获了目标几何体。还可视化了上采样和修剪的分层重建过程。
运行示例
要训练网络,请转到Minkowski Engine根目录,然后键入:
python -m examples.reconstruction --train
要可视化网络预测或尝试预先训练的模型,请输入:
python -m examples.reconstruction
该程序将可视化两个3D形状。左边的一个是目标3D形状,右边的一个是重构的网络预测。
完整的代码可以在example / reconstruction.py找到。
import os
import sys
import subprocess
import argparse
import logging
import glob
import numpy as np
from time import time
import urllib
# Must be imported before large libs
try:
import open3d as o3d
except ImportError:
raise ImportError('Please install open3d and scipy with `pip install open3d scipy`.')
import torch
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
import MinkowskiEngine as ME
from examples.modelnet40 import InfSampler, resample_mesh
M = np.array([[0.80656762, -0.5868724, -0.07091862],
[0.3770505, 0.418344, 0.82632997],
[-0.45528188, -0.6932309, 0.55870326]])
assert int(
o3d.__version__.split('.')[1]
) >= 8, f'Requires open3d version >= 0.8, the current version is {o3d.__version__}'
if not os.path.exists('ModelNet40'):
logging.info('Downloading the fixed ModelNet40 dataset…')
subprocess.run(["sh", "./examples/download_modelnet40.sh"])
###############################################################################
# Utility functions
###############################################################################
def PointCloud(points, colors=None):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
if colors is not None:
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def collate_pointcloud_fn(list_data):
coords, feats, labels = list(zip(*list_data))
# Concatenate all lists
return {
'coords': coords,
'xyzs': [torch.from_numpy(feat).float() for feat in feats],
'labels': torch.LongTensor(labels),
}
class ModelNet40Dataset(torch.utils.data.Dataset):
def __init__(self, phase, transform=None, config=None):
self.phase = phase
self.files = []
self.cache = {}
self.data_objects = []
self.transform = transform
self.resolution = config.resolution
self.last_cache_percent = 0
self.root = './ModelNet40'
fnames = glob.glob(os.path.join(self.root, 'chair/train/*.off'))
fnames = sorted([os.path.relpath(fname, self.root) for fname in fnames])
self.files = fnames
assert len(self.files) > 0, "No file loaded"
logging.info(
f"Loading the subset {phase} from {self.root} with {len(self.files)} files"
)
self.density = 30000
# Ignore warnings in obj loader
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
mesh_file = os.path.join(self.root, self.files[idx])
if idx in self.cache:
xyz = self.cache[idx]
else:
# Load a mesh, over sample, copy, rotate, voxelization
assert os.path.exists(mesh_file)
pcd = o3d.io.read_triangle_mesh(mesh_file)
# Normalize to fit the mesh inside a unit cube while preserving aspect ratio
vertices = np.asarray(pcd.vertices)
vmax = vertices.max(0, keepdims=True)
vmin = vertices.min(0, keepdims=True)
pcd.vertices = o3d.utility.Vector3dVector(
(vertices - vmin) / (vmax - vmin).max())
# Oversample points and copy
xyz = resample_mesh(pcd, density=self.density)
self.cache[idx] = xyz
cache_percent = int((len(self.cache) / len(self)) * 100)
if cache_percent > 0 and cache_percent % 10 == 0 and cache_percent != self.last_cache_percent:
logging.info(
f"Cached {self.phase}: {len(self.cache)} / {len(self)}: {cache_percent}%"
)
self.last_cache_percent = cache_percent
# Use color or other features if available
feats = np.ones((len(xyz), 1))
if len(xyz) < 1000:
logging.info(
f"Skipping {mesh_file}: does not have sufficient CAD sampling density after resampling: {len(xyz)}."
)
return None
if self.transform:
xyz, feats = self.transform(xyz, feats)
# Get coords
xyz = xyz * self.resolution
coords = np.floor(xyz)
inds = ME.utils.sparse_quantize(coords, return_index=True)
return (coords[inds], xyz[inds], idx)
def make_data_loader(phase, augment_data, batch_size, shuffle, num_workers,
repeat, config):
dset = ModelNet40Dataset(phase, config=config)
args = {
'batch_size': batch_size,
'num_workers': num_workers,
'collate_fn': collate_pointcloud_fn,
'pin_memory': False,
'drop_last': False
}
if repeat:
args['sampler'] = InfSampler(dset, shuffle)
else:
args['shuffle'] = shuffle
loader = torch.utils.data.DataLoader(dset, **args)
return loader
ch = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
format=os.uname()[1].split('.')[0] + ' %(asctime)s %(message)s',
datefmt='%m/%d %H:%M:%S',
handlers=[ch])
parser = argparse.ArgumentParser()
parser.add_argument('--resolution', type=int, default=128)
parser.add_argument('--max_iter', type=int, default=30000)
parser.add_argument('--val_freq', type=int, default=1000)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--lr', default=1e-2, type=float)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--stat_freq', type=int, default=50)
parser.add_argument(
'--weights', type=str, default='modelnet_reconstruction.pth')
parser.add_argument('--load_optimizer', type=str, default='true')
parser.add_argument('--train', action='store_true')
parser.add_argument('--max_visualization', type=int, default=4)
###############################################################################
# End of utility functions
###############################################################################
class GenerativeNet(nn.Module):
CHANNELS = [1024, 512, 256, 128, 64, 32, 16]
def __init__(self, resolution, in_nchannel=512):
nn.Module.__init__(self)
self.resolution = resolution
# Input sparse tensor must have tensor stride 128.
ch = self.CHANNELS
# Block 1
self.block1 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
in_nchannel,
ch[0],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[0]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[0], ch[0], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[0]),
ME.MinkowskiELU(),
ME.MinkowskiConvolutionTranspose(
ch[0],
ch[1],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[1]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[1], ch[1], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[1]),
ME.MinkowskiELU(),
)
self.block1_cls = ME.MinkowskiConvolution(
ch[1], 1, kernel_size=1, has_bias=True, dimension=3)
# Block 2
self.block2 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
ch[1],
ch[2],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[2]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[2], ch[2], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[2]),
ME.MinkowskiELU(),
)
self.block2_cls = ME.MinkowskiConvolution(
ch[2], 1, kernel_size=1, has_bias=True, dimension=3)
# Block 3
self.block3 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
ch[2],
ch[3],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[3]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[3], ch[3], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[3]),
ME.MinkowskiELU(),
)
self.block3_cls = ME.MinkowskiConvolution(
ch[3], 1, kernel_size=1, has_bias=True, dimension=3)
# Block 4
self.block4 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
ch[3],
ch[4],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[4]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[4], ch[4], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[4]),
ME.MinkowskiELU(),
)
self.block4_cls = ME.MinkowskiConvolution(
ch[4], 1, kernel_size=1, has_bias=True, dimension=3)
# Block 5
self.block5 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
ch[4],
ch[5],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[5]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[5], ch[5], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[5]),
ME.MinkowskiELU(),
)
self.block5_cls = ME.MinkowskiConvolution(
ch[5], 1, kernel_size=1, has_bias=True, dimension=3)
# Block 6
self.block6 = nn.Sequential(
ME.MinkowskiConvolutionTranspose(
ch[5],
ch[6],
kernel_size=2,
stride=2,
generate_new_coords=True,
dimension=3),
ME.MinkowskiBatchNorm(ch[6]),
ME.MinkowskiELU(),
ME.MinkowskiConvolution(ch[6], ch[6], kernel_size=3, dimension=3),
ME.MinkowskiBatchNorm(ch[6]),
ME.MinkowskiELU(),
)
self.block6_cls = ME.MinkowskiConvolution(
ch[6], 1, kernel_size=1, has_bias=True, dimension=3)
# pruning
self.pruning = ME.MinkowskiPruning()
def get_batch_indices(self, out):
return out.coords_man.get_row_indices_per_batch(out.coords_key)
def get_target(self, out, target_key, kernel_size=1):
with torch.no_grad():
target = torch.zeros(len(out), dtype=torch.bool)
cm = out.coords_man
strided_target_key = cm.stride(
target_key, out.tensor_stride[0], force_creation=True)
ins, outs = cm.get_kernel_map(
out.coords_key,
strided_target_key,
kernel_size=kernel_size,
region_type=1)
for curr_in in ins:
target[curr_in] = 1
return target
def valid_batch_map(self, batch_map):
for b in batch_map:
if len(b) == 0:
return False
return True
def forward(self, z, target_key):
out_cls, targets = [], []
# Block1
out1 = self.block1(z)
out1_cls = self.block1_cls(out1)
target = self.get_target(out1, target_key)
targets.append(target)
out_cls.append(out1_cls)
keep1 = (out1_cls.F > 0).cpu().squeeze()
# If training, force target shape generation, use net.eval() to disable
if self.training:
keep1 += target
# Remove voxels 32
out1 = self.pruning(out1, keep1.cpu())
# Block 2
out2 = self.block2(out1)
out2_cls = self.block2_cls(out2)
target = self.get_target(out2, target_key)
targets.append(target)
out_cls.append(out2_cls)
keep2 = (out2_cls.F > 0).cpu().squeeze()
if self.training:
keep2 += target
# Remove voxels 16
out2 = self.pruning(out2, keep2.cpu())
# Block 3
out3 = self.block3(out2)
out3_cls = self.block3_cls(out3)
target = self.get_target(out3, target_key)
targets.append(target)
out_cls.append(out3_cls)
keep3 = (out3_cls.F > 0).cpu().squeeze()
if self.training:
keep3 += target
# Remove voxels 8
out3 = self.pruning(out3, keep3.cpu())
# Block 4
out4 = self.block4(out3)
out4_cls = self.block4_cls(out4)
target = self.get_target(out4, target_key)
targets.append(target)
out_cls.append(out4_cls)
keep4 = (out4_cls.F > 0).cpu().squeeze()
if self.training:
keep4 += target
# Remove voxels 4
out4 = self.pruning(out4, keep4.cpu())
# Block 5
out5 = self.block5(out4)
out5_cls = self.block5_cls(out5)
target = self.get_target(out5, target_key)
targets.append(target)
out_cls.append(out5_cls)
keep5 = (out5_cls.F > 0).cpu().squeeze()
if self.training:
keep5 += target
# Remove voxels 2
out5 = self.pruning(out5, keep5.cpu())
# Block 5
out6 = self.block6(out5)
out6_cls = self.block6_cls(out6)
target = self.get_target(out6, target_key)
targets.append(target)
out_cls.append(out6_cls)
keep6 = (out6_cls.F > 0).cpu().squeeze()
# Last layer does not require keep
# if self.training:
# keep6 += target
# Remove voxels 1
out6 = self.pruning(out6, keep6.cpu())
return out_cls, targets, out6
def train(net, dataloader, device, config):
in_nchannel = len(dataloader.dataset)
optimizer = optim.SGD(
net.parameters(),
lr=config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, 0.95)
crit = nn.BCEWithLogitsLoss()
net.train()
train_iter = iter(dataloader)
# val_iter = iter(val_dataloader)
logging.info(f'LR: {scheduler.get_lr()}')
for i in range(config.max_iter):
s = time()
data_dict = train_iter.next()
d = time() - s
optimizer.zero_grad()
init_coords = torch.zeros((config.batch_size, 4), dtype=torch.int)
init_coords[:, 0] = torch.arange(config.batch_size)
in_feat = torch.zeros((config.batch_size, in_nchannel))
in_feat[torch.arange(config.batch_size), data_dict['labels']] = 1
sin = ME.SparseTensor(
feats=in_feat,
coords=init_coords,
allow_duplicate_coords=True, # for classification, it doesn't matter
tensor_stride=config.resolution,
).to(device)
# Generate target sparse tensor
cm = sin.coords_man
target_key = cm.create_coords_key(
ME.utils.batched_coordinates(data_dict['xyzs']),
force_creation=True,
allow_duplicate_coords=True)
# Generate from a dense tensor
out_cls, targets, sout = net(sin, target_key)
num_layers, loss = len(out_cls), 0
losses = []
for out_cl, target in zip(out_cls, targets):
curr_loss = crit(out_cl.F.squeeze(),
target.type(out_cl.F.dtype).to(device))
losses.append(curr_loss.item())
loss += curr_loss / num_layers
loss.backward()
optimizer.step()
t = time() - s
if i % config.stat_freq == 0:
logging.info(
f'Iter: {i}, Loss: {loss.item():.3e}, Depths: {len(out_cls)} Data Loading Time: {d:.3e}, Tot Time: {t:.3e}'
)
if i % config.val_freq == 0 and i > 0:
torch.save(
{
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'curr_iter': i,
}, config.weights)
scheduler.step()
logging.info(f'LR: {scheduler.get_lr()}')
net.train()
def visualize(net, dataloader, device, config):
in_nchannel = len(dataloader.dataset)
net.eval()
crit = nn.BCEWithLogitsLoss()
n_vis = 0
for data_dict in dataloader:
init_coords = torch.zeros((config.batch_size, 4), dtype=torch.int)
init_coords[:, 0] = torch.arange(config.batch_size)
in_feat = torch.zeros((config.batch_size, in_nchannel))
in_feat[torch.arange(config.batch_size), data_dict['labels']] = 1
sin = ME.SparseTensor(
feats=in_feat,
coords=init_coords,
allow_duplicate_coords=True, # for classification, it doesn't matter
tensor_stride=config.resolution,
).to(device)
# Generate target sparse tensor
cm = sin.coords_man
target_key = cm.create_coords_key(
ME.utils.batched_coordinates(data_dict['xyzs']),
force_creation=True,
allow_duplicate_coords=True)
# Generate from a dense tensor
out_cls, targets, sout = net(sin, target_key)
num_layers, loss = len(out_cls), 0
for out_cl, target in zip(out_cls, targets):
loss += crit(out_cl.F.squeeze(),
target.type(out_cl.F.dtype).to(device)) / num_layers
batch_coords, batch_feats = sout.decomposed_coordinates_and_features
for b, (coords, feats) in enumerate(zip(batch_coords, batch_feats)):
pcd = PointCloud(coords)
pcd.estimate_normals()
pcd.translate([0.6 * config.resolution, 0, 0])
pcd.rotate(M)
opcd = PointCloud(data_dict['xyzs'][b])
opcd.translate([-0.6 * config.resolution, 0, 0])
opcd.estimate_normals()
opcd.rotate(M)
o3d.visualization.draw_geometries([pcd, opcd])
n_vis += 1
if n_vis > config.max_visualization:
return
if __name__ == '__main__':
config = parser.parse_args()
logging.info(config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataloader = make_data_loader(
'val',
augment_data=True,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
repeat=True,
config=config)
in_nchannel = len(dataloader.dataset)
net = GenerativeNet(config.resolution, in_nchannel=in_nchannel)
net.to(device)
logging.info(net)
if config.train:
train(net, dataloader, device, config)
else:
if not os.path.exists(config.weights):
logging.info(
f'Downloaing pretrained weights. This might take a while…')
urllib.request.urlretrieve(
"https://bit.ly/36d9m1n", filename=config.weights)
logging.info(f'Loading weights from {config.weights}')
checkpoint = torch.load(config.weights)
net.load_state_dict(checkpoint['state_dict'])
visualize(net, dataloader, device, config)
手机扫一扫
移动阅读更方便
你可能感兴趣的文章