首先看一下这个静态图绘制模块
静态图形处理
数据分析三剑客
海滨城市温度分析案例
导包
# 导包
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import matplotlib.pyplot as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
导入数据(各个海滨城的数据)
# 导入数据(各个海滨城市数据)
ferrara1 = pd.read_csv('./ferrara_150715.csv')
ferrara2 = pd.read_csv('./ferrara_250715.csv')
ferrara3 = pd.read_csv('./ferrara_270615.csv')
ferrara=pd.concat([ferrara1,ferrara1,ferrara1],ignore_index=True)
torino1 = pd.read_csv('./torino_150715.csv')
torino2 = pd.read_csv('./torino_250715.csv')
torino3 = pd.read_csv('./torino_270615.csv')
torino = pd.concat([torino1,torino2,torino3],ignore_index=True)
...
去除没用的列
city_list = [faenza,cesena,piacenza,bologna,asti,ravenna,milano,mantova,torino,ferrara]
for city in city_list:
city.drop(labels='Unnamed: 0',axis=1,inplace=True)
构造数据,显示最高温度与离海远近的关系
max_temp = []
dist_list = []
for city in city_list:
temp = city["temp"].max()
max_temp.append(temp)
dist = city['dist'][0]
dist_list.append(dist)
plt.scatter(dist_list,max_temp) # 传入两个列表
plt.xlabel("距离") # x
plt.xlabel("最高温度") # y
plt.title("最高温度和距离之间的关系") # 标题
多用于预测
sklearn.linear_model
创建一个温度模型,让其可以根据一个距离预测出该距离对应城市的最高温度.
#样本数据的提取
feature = np.array(dist_list) # 数组形式的特征数据
target = np.array(max_temp) # 数组形式的目标数据
from sklearn.linear_model import LinearRegression
linear = LinearRegression() # 实例化算法模型
linear.fit(feature.reshape(-1,1),target) # 特征数据必须是二维的 !!!
linear.predict([[226],[333]])
绘制关系图
# 使用多个点绘制最高温度和距离之间的关系
x = np.linspace(0,400,num=100)
y = linear.predict(x.reshape(-1,1))
plt.scatter(dist_list,max_temp)
plt.scatter(x,y)
plt.xlabel('距离')
plt.ylabel('最高温度')
plt.title('最高温度和距离直接的关系')
手机扫一扫
移动阅读更方便
你可能感兴趣的文章