Jittor框架API
这里是Jittor主模块的API文档,可以通过import jittor来获取该模块。
classjittor.ExitHooks
exc_handler(exc_type, exc, *args)
exit(code=0)
hook()
classjittor.Function(*args, **kw)
Function Module for customized backward operations
Example 1 (Function can have multiple input and multiple output, and user can store value for backward computation):
import jittor as jt
from jittor import Function
class MyFunc(Function):
def execute(self, x, y):
self.x = x
self.y = y
return x*y, x/y
def grad(self, grad0, grad1):
return grad0 * self.y, grad1 * self.x
a = jt.array(3.0)
b = jt.array(4.0)
func = MyFunc()
c,d = func(a, b)
da, db = jt.grad(c+d*3, [a, b])
assert da.data == 4
assert db.data == 9
Example 2(Function can return None for no gradiant, and gradiant can also be None):
import jittor as jt
from jittor import Function
class MyFunc(Function):
def execute(self, x, y):
self.x = x
self.y = y
return x*y, x/y
def grad(self, grad0, grad1):
assert grad1 is None
return grad0 * self.y, None
a = jt.array(3.0)
b = jt.array(4.0)
func = MyFunc()
c,d = func(a, b)
d.stop_grad()
da, db = jt.grad(c+d*3, [a, b])
assert da.data == 4
assert db.data == 0
classmethodapply(*args, **kw)
dfs(parents, k, callback, callback_leave=None)
classjittor.Module(*args, **kw)
apply(func)
children()
dfs(parents, k, callback, callback_leave=None)
eval()
execute(*args, **kw)
extra_repr()
is_training()
load(path)
load_parameters(params)
load_state_dict(params)
modules()
mpi_param_broadcast(root=0)
named_modules()
named_parameters()
parameters()
register_forward_hook(func)
register_pre_forward_hook(func)
save(path)
state_dict()
train()
jittor.argmax(x, dim, keepdims: jittor_core.ops.bool = False)
jittor.argmin(x, dim, keepdims: jittor_core.ops.bool = False)
jittor.array(data, dtype=None)
jittor.attrs(var)
jittor.clamp(x, min_v=None, max_v=None)
jittor.clean()
jittor.detach(x)
jittor.dirty_fix_pytorch_runtime_error()
This funtion should be called before pytorch.
Example:
import jittor as jt
jt.dirty_fix_pytorch_runtime_error()
import torch
jittor.display_memory_info()
jittor.fetch(*args)
Async fetch vars with function closure.
Example 1:
for img,label in enumerate(your_dataset):
pred = your_model(img)
loss = critic(pred, label)
acc = accuracy(pred, label)
jt.fetch(acc, loss,
lambda acc, loss:
print(f"loss:{loss} acc:{acc}"
)
Example 2:
for i,(img,label) in enumerate(your_dataset):
pred = your_model(img)
loss = critic(pred, label)
acc = accuracy(pred, label)
# variable i will be bind into function closure
jt.fetch(i, acc, loss,
lambda i, acc, loss:
print(f"#{i}, loss:{loss} acc:{acc}"
)
classjittor.flag_scope(**jt_flags)
jittor.flatten(input, start_dim=0, end_dim=-1)
flatten dimentions by reshape
jittor.format(v, spec)
jittor.full(shape, val, dtype='float32')
jittor.full_like(x, val)
jittor.get_len(var)
jittor.grad(loss, targets)
jittor.jittor_exit()
jittor.liveness_info()
jittor.load(path)
classjittor.log_capture_scope(**jt_flags)
log capture scope
example:
with jt.log_capture_scope(log_v=0) as logs:
LOG.v("…")
print(logs)
jittor.make_module(func, exec_n_args=1)
jittor.masked_fill(x, mask, value)
classjittor.no_grad(**jt_flags)
no_grad scope, all variable created inside this scope will stop grad.
Example:
import jittor as jt
with jt.no_grad():
…
jittor.norm(x, k, dim)
jittor.normal(mean, std, size=None, dtype='float32')
jittor.ones(shape, dtype='float32')
jittor.ones_like(x)
jittor.permute(x, *dim)
Declaration: VarHolder* transpose(VarHolder* x, NanoVector axes=NanoVector())
jittor.pow(x, y)
classjittor.profile_scope(warmup=0, rerun=0, **jt_flags)
profile scope
example:
with jt.profile_scope() as report:
……
print(report)
jittor.rand(*size, dtype='float32', requires_grad=False)
jittor.randn(*size, dtype='float32', requires_grad=False)
jittor.reshape(x, *shape)
Declaration: VarHolder* reshape(VarHolder* x, NanoVector shape)
jittor.safepickle(obj, path)
jittor.safeunpickle(path)
jittor.save(params_dict, path)
jittor.single_process_scope(rank=0)
Code in this scope will only be executed by single process.
All the mpi code inside this scope will have not affect. mpi.world_rank() and mpi.local_rank() will return 0, world_size() will return 1,
example:
@jt.single_process_scope(rank=0)
def xxx():
…
jittor.size(v, dim=None)
jittor.sqr(x)
jittor.squeeze(x, dim)
jittor.start_grad(x)
jittor.std(x)
jittor.to_bool(v)
jittor.to_float(v)
jittor.to_int(v)
jittor.transpose(x, *dim)
Declaration: VarHolder* transpose(VarHolder* x, NanoVector axes=NanoVector())
jittor.type_as(a, b)
jittor.unsqueeze(x, dim)
jittor.view(x, *shape)
Declaration: VarHolder* reshape(VarHolder* x, NanoVector shape)
jittor.vtos(v)
jittor.zeros(shape, dtype='float32')
jittor.zeros_like(x)
jittor.core
以下为Jittor的内核API,内核API可以通过jittor.core.XXX或者jittor.XXX直接访问。
classjittor_core.DumpGraphs
inputs
Declaration: vector
nodes_info
Declaration: vector
outputs
Declaration: vector
classjittor_core.MemInfo
total_cpu_ram
Declaration: int64 total_cpu_ram;
total_cuda_ram
Declaration: int64 total_cuda_ram;
classjittor_core.NanoString
classjittor_core.NanoVector
append()
Declaration: inline void push_back_check_overflow(int64 v)
classjittor_core.RingBuffer
clear()
Declaration: inline void clear()
is_stop()
Declaration: inline bool is_stop()
keep_numpy_array()
Declaration: inline void keep_numpy_array(bool keep)
pop()
Declaration: PyObject* pop()
push()
Declaration: void push(PyObject* obj)
recv()
Declaration: PyObject* pop()
send()
Declaration: void push(PyObject* obj)
stop()
Declaration: inline void stop()
total_pop()
Declaration: inline uint64 total_pop()
total_push()
Declaration: inline uint64 total_push()
jittor_core.Var
jittor_core.jittor_core.Var 的别名
jittor_core.cleanup()
Declaration: void cleanup()
jittor_core.clear_trace_data()
Declaration: void clear_trace_data()
jittor_core.display_memory_info()
Declaration: void display_memory_info(const char* fileline=””, bool dump_var=false, bool red_color=false)
jittor_core.dump_all_graphs()
Declaration: DumpGraphs dump_all_graphs()
jittor_core.dump_trace_data()
Declaration: PyObject* dump_trace_data()
jittor_core.fetch_sync()
Declaration: vector
classjittor_core.flags
addr2line_path
Document:
addr2line_path(type:string, default:””): Path of addr2line.
Declaration: string _get_addr2line_path()
cache_path
Document:
cache_path(type:string, default:””): Cache path of jittor
Declaration: string _get_cache_path()
cc_flags
Document:
cc_flags(type:string, default:””): Flags of C++ compiler
Declaration: string _get_cc_flags()
cc_path
Document:
cc_path(type:string, default:””): Path of C++ compiler
Declaration: string _get_cc_path()
cc_type
Document:
cc_type(type:string, default:””): Type of C++ compiler(clang, icc, g++)
Declaration: string _get_cc_type()
check_graph
Document:
check_graph(type:int, default:0): Unify graph sanity check.
Declaration: int _get_check_graph()
compile_options
Document:
compile_options(type:fast_shared_ptr
Declaration: fast_shared_ptr
cuda_archs
Document:
cuda_archs(type:vector
Declaration: vector
enable_tuner
Document:
enable_tuner(type:int, default:1): Enable tuner.
Declaration: int _get_enable_tuner()
exclude_pass
Document:
exclude_pass(type:string, default:””): Don’t run certian pass.
Declaration: string _get_exclude_pass()
extra_gdb_cmd
Document:
extra_gdb_cmd(type:string, default:””): Extra command pass to GDB, seperate by(;) .
Declaration: string _get_extra_gdb_cmd()
gdb_attach
Document:
gdb_attach(type:int, default:0): gdb attach self process.
Declaration: int _get_gdb_attach()
gdb_path
Document:
gdb_path(type:string, default:””): Path of GDB.
Declaration: string _get_gdb_path()
has_pybt
Document:
has_pybt(type:int, default:0): GDB has pybt or not.
Declaration: int _get_has_pybt()
jit_search_kernel
Document:
jit_search_kernel(type:int, default:0): Jit search for the fastest kernel.
Declaration: int _get_jit_search_kernel()
jit_search_rerun
Document:
jit_search_rerun(type:int, default:10):
Declaration: int _get_jit_search_rerun()
jit_search_warmup
Document:
jit_search_warmup(type:int, default:2):
Declaration: int _get_jit_search_warmup()
jittor_path
Document:
jittor_path(type:string, default:””): Source path of jittor
Declaration: string _get_jittor_path()
l1_cache_size
Document:
l1_cache_size(type:int, default:32768): size of level 1 cache (byte)
Declaration: int _get_l1_cache_size()
lazy_execution
Document:
lazy_execution(type:int, default:1): Default enabled, if disable, use immediately eager execution rather than lazy execution, This flag makes error message and traceback infomation better. But this flag will raise memory consumption and lower the performance.
Declaration: int _get_lazy_execution()
log_silent
Document:
log_silent(type:int, default:0): The log will be completely silent.
Declaration: int _get_log_silent()
log_sync
Document:
log_sync(type:int, default:0): Set log printed synchronously.
Declaration: int _get_log_sync()
log_v
Document:
log_v(type:int, default:0): Verbose level of logging
Declaration: int _get_log_v()
log_vprefix
Document:
log_vprefix(type:string, default:””): Verbose level of logging prefix
example: log_vprefix=’op=1,node=2,executor.cc:38$=1000’ Declaration: string _get_log_vprefix()
no_grad
Document:
no_grad(type:bool, default:0): No grad for all jittor Var creation
Declaration: bool _get_no_grad()
nvcc_flags
Document:
nvcc_flags(type:string, default:””): Flags of CUDA C++ compiler
Declaration: string _get_nvcc_flags()
nvcc_path
Document:
nvcc_path(type:string, default:””): Path of CUDA C++ compiler
Declaration: string _get_nvcc_path()
profiler_enable
Document:
profiler_enable(type:int, default:0): Enable profiler.
Declaration: int _get_profiler_enable()
profiler_hide_relay
Document:
profiler_hide_relay(type:int, default:0): Profiler hide relayed op.
Declaration: int _get_profiler_hide_relay()
profiler_rerun
Document:
profiler_rerun(type:int, default:0): Profiler rerun.
Declaration: int _get_profiler_rerun()
profiler_warmup
Document:
profiler_warmup(type:int, default:0): Profiler warmup.
Declaration: int _get_profiler_warmup()
python_path
Document:
python_path(type:string, default:””): Path of python interpreter
Declaration: string _get_python_path()
rewrite_op
Document:
rewrite_op(type:int, default:1): Rewrite source file of jit operator or not
Declaration: int _get_rewrite_op()
stat_allocator_total_alloc_byte
Document:
stat_allocator_total_alloc_byte(type:size_t, default:0): Total alloc byte
Declaration: size_t _get_stat_allocator_total_alloc_byte()
stat_allocator_total_alloc_call
Document:
stat_allocator_total_alloc_call(type:size_t, default:0): Number of alloc function call
Declaration: size_t _get_stat_allocator_total_alloc_call()
stat_allocator_total_free_byte
Document:
stat_allocator_total_free_byte(type:size_t, default:0): Total alloc byte
Declaration: size_t _get_stat_allocator_total_free_byte()
stat_allocator_total_free_call
Document:
stat_allocator_total_free_call(type:size_t, default:0): Number of alloc function call
Declaration: size_t _get_stat_allocator_total_free_call()
trace_depth
Document:
trace_depth(type:int, default:10): trace depth for GDB.
Declaration: int _get_trace_depth()
trace_py_var
Document:
trace_py_var(type:int, default:0): Trace py stack max depth for debug.
Declaration: int _get_trace_py_var()
try_use_32bit_index
Document:
try_use_32bit_index(type:int, default:0): If not overflow, try to use 32 bit type as index type.
Declaration: int _get_try_use_32bit_index()
update_queue_auto_flush_delay
Document:
update_queue_auto_flush_delay(type:int, default:2): when size of a update queue is great than this value, update queue trigger auto flush(default 2).
Declaration: int _get_update_queue_auto_flush_delay()
use_cuda
Document:
use_cuda(type:int, default:0): Use cuda or not. 1 for trying to use cuda, 2 for forcing to use cuda.
Declaration: int _get_use_cuda()
use_cuda_managed_allocator
Document:
use_cuda_managed_allocator(type:int, default:1): Enable cuda_managed_allocator
Declaration: int _get_use_cuda_managed_allocator()
use_nfef_allocator
Document:
use_nfef_allocator(type:int, default:0): Enable never free exact fit allocator
Declaration: int _get_use_nfef_allocator()
use_parallel_op_compiler
Document:
use_parallel_op_compiler(type:int, default:16): Number of threads that parallel op comiler used, default 16, set this value to 0 will disable parallel op compiler.
Declaration: int _get_use_parallel_op_compiler()
use_sfrl_allocator
Document:
use_sfrl_allocator(type:int, default:1): Enable sfrl allocator
Declaration: int _get_use_sfrl_allocator()
use_stat_allocator
Document:
use_stat_allocator(type:int, default:0): Enable stat allocator
Declaration: int _get_use_stat_allocator()
jittor_core.gc()
Declaration: void gc_all()
jittor_core.get_device_count()
Declaration: inline int get_device_count()
jittor_core.get_mem_info()
Declaration: inline MemInfo get_mem_info()
jittor_core.grad()
Declaration: vector
jittor_core.graph_check()
Declaration: void do_graph_check()
jittor_core.hash()
Document:
simple hash function
Declaration: inline uint hash(const char* input)
jittor_core.number_of_hold_vars()
Declaration: inline static uint64 get_number_of_hold_vars()
jittor_core.number_of_lived_ops()
Declaration: inline static int64 get_number_of_lived_ops()
jittor_core.number_of_lived_vars()
Declaration: inline static int64 get_number_of_lived_vars()
jittor_core.print_trace()
Declaration: inline static void __print_trace()
jittor_core.seed()
Declaration: void set_seed(int seed)
jittor_core.set_lock_path()
Declaration: void set_lock_path(string path)
jittor_core.set_seed()
Declaration: void set_seed(int seed)
jittor_core.sync()
Declaration: void sync(const vector
jittor_core.sync_all()
Declaration: void sync_all(bool device_sync=false)
jittor_core.tape_together()
Declaration: void tape_together(
const vector
)
jittor.ops
这里是Jittor的基础算子模块的API文档,该API可以通过jittor.ops.XXX或者jittor.XXX直接访问。
jittor_core.ops.abs()
Declaration: VarHolder* abs(VarHolder* x)
jittor_core.ops.acos()
Declaration: VarHolder* acos(VarHolder* x)
jittor_core.ops.acosh()
Declaration: VarHolder* acosh(VarHolder* x)
jittor_core.ops.add()
Declaration: VarHolder* add(VarHolder* x, VarHolder* y)
jittor_core.ops.all_()
Declaration: VarHolder* reduce_logical_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.any_()
Declaration: VarHolder* reduce_logical_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.arccos()
Declaration: VarHolder* acos(VarHolder* x)
jittor_core.ops.arccosh()
Declaration: VarHolder* acosh(VarHolder* x)
jittor_core.ops.arcsin()
Declaration: VarHolder* asin(VarHolder* x)
jittor_core.ops.arcsinh()
Declaration: VarHolder* asinh(VarHolder* x)
jittor_core.ops.arctan()
Declaration: VarHolder* atan(VarHolder* x)
jittor_core.ops.arctanh()
Declaration: VarHolder* atanh(VarHolder* x)
jittor_core.ops.arg_reduce()
Declaration: vector
jittor_core.ops.argsort()
Document: *
Argsort Operator Perform an indirect sort by given key or compare function.
x is input, y is output index, satisfy:
x[y[0]] <= x[y[1]] <= x[y[2]] <= … <= x[y[n]]
or
key(y[0]) <= key(y[1]) <= key(y[2]) <= … <= key(y[n])
or
compare(y[0], y[1]) && compare(y[1], y[2]) && …
Example:
index, value = jt.argsort([11,13,12])
# return [0 2 1], [11 12 13]
index, value = jt.argsort([11,13,12], descending=True)
# return [1 2 0], [13 12 11]
index, value = jt.argsort([[11,13,12], [12,11,13]])
# return [[0 2 1],[1 0 2]], [[11 12 13],[11 12 13]]
index, value = jt.argsort([[11,13,12], [12,11,13]], dim=0)
# return [[0 1 0],[1 0 1]], [[11 11 12],[12 13 13]]
Declaration: vector
jittor_core.ops.array()
Declaration: VarHolder* array__(PyObject* obj)
jittor_core.ops.array_()
Declaration: VarHolder* array_(ArrayArgs&& args)
jittor_core.ops.asin()
Declaration: VarHolder* asin(VarHolder* x)
jittor_core.ops.asinh()
Declaration: VarHolder* asinh(VarHolder* x)
jittor_core.ops.atan()
Declaration: VarHolder* atan(VarHolder* x)
jittor_core.ops.atanh()
Declaration: VarHolder* atanh(VarHolder* x)
jittor_core.ops.binary()
Declaration: VarHolder* binary(VarHolder* x, VarHolder* y, NanoString p)
jittor_core.ops.bitwise_and()
Declaration: VarHolder* bitwise_and(VarHolder* x, VarHolder* y)
jittor_core.ops.bitwise_not()
Declaration: VarHolder* bitwise_not(VarHolder* x)
jittor_core.ops.bitwise_or()
Declaration: VarHolder* bitwise_or(VarHolder* x, VarHolder* y)
jittor_core.ops.bitwise_xor()
Declaration: VarHolder* bitwise_xor(VarHolder* x, VarHolder* y)
jittor_core.ops.bool()
Declaration: VarHolder* bool_(VarHolder* x)
jittor_core.ops.broadcast()
Declaration: VarHolder* broadcast_to(VarHolder* x, NanoVector shape, NanoVector dims=NanoVector()) Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.ops.broadcast_var()
Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.ops.candidate()
Document: *
Candidate Operator Perform an indirect candidate filter by given a fail condition.
x is input, y is output index, satisfy:
not fail_cond(y[0], y[1]) and
not fail_cond(y[0], y[2]) and not fail_cond(y[1], y[2]) and
…
… and not fail_cond(y[m-2], y[m-1])
Where m is number of selected candidates.
Pseudo code:
y = []
for i in range(n):
pass = True
for j in y:
if (@fail_cond):
pass = false
break
if (pass):
y.append(i)
return y
Example:
jt.candidate(jt.random(100,2), '(@x(j,0)>@x(i,0))or(@x(j,1)>@x(i,1))')
# return y satisfy:
# x[y[0], 0] <= x[y[1], 0] and x[y[1], 0] <= x[y[2], 0] and … and x[y[m-2], 0] <= x[y[m-1], 0] and
# x[y[0], 1] <= x[y[1], 1] and x[y[1], 1] <= x[y[2], 1] and … and x[y[m-2], 1] <= x[y[m-1], 1]
Declaration: VarHolder* candidate(VarHolder* x, string&& fail_cond, NanoString dtype=ns_int32)
jittor_core.ops.cast()
Declaration: VarHolder* unary(VarHolder* x, NanoString op)
jittor_core.ops.ceil()
Declaration: VarHolder* ceil(VarHolder* x)
jittor_core.ops.clone()
Declaration: VarHolder* clone(VarHolder* x)
jittor_core.ops.code()
Document: *
Code Operator for easily customized op.
Example-1:
from jittor import Function
import jittor as jt
class Func(Function):
def execute(self, x):
self.save_vars = x
return jt.code(x.shape, x.dtype, [x],
cpu_src='''
for (int i=0; i<in0_shape0; i++)
''')
def grad(self, grad_x):
x = self.save_vars
return jt.code(x.shape, x.dtype, [x, grad_x],
cpu_src='''
for (int i=0; i<in0_shape0; i++)
''')
a = jt.random([10])
func = Func()
b = func(a)
print(b)
print(jt.grad(b,a))
Example-2:
a = jt.array([3,2,1])
b = jt.code(a.shape, a.dtype, [a],
cpu_header="""
#include
@alias(a, in0)
@alias(b, out)
""",
cpu_src="""
for (int i=0; i<a_shape0; i++)
std::sort(&@b(0), &@b(in0_shape0));
"""
)
assert (b.data==[1,2,3]).all()
Example-3:
#This example shows how to set multiple outputs in code op.
a = jt.array([3,2,1])
b,c = jt.code([(1,), (1,)], [a.dtype, a.dtype], [a],
cpu_header="""
#include
using namespace std;
""",
cpu_src="""
@alias(a, in0)
@alias(b, out0)
@alias(c, out1)
for (int i=0; i<a_shape0; i++) {
@b(0) = std::min(@b(0), @a(i));
@c(0) = std::max(@c(0), @a(i));
}
cout << "min:" << @b(0) << " max:" << @c(0) << endl;
"""
)
assert b.data == 1, b
assert c.data == 3, c
Example-4:
#This example shows how to use dynamic shape of jittor variables.
a = jt.array([5,-4,3,-2,1])
# negtive shape for max size of vary dimension
b,c = jt.code([(-5,), (-5,)], [a.dtype, a.dtype], [a],
cpu_src="""
@alias(a, in0)
@alias(b, out0)
@alias(c, out1)
int num_b=0, num_c=0;
for (int i=0; i<a_shape0; i++) {
if (@a(i)>0)
else
}
b->set_shape({num_b});
c->set_shape({num_c});
"""
)
assert (b.data == [5,3,1]).all()
assert (c.data == [-4,-2]).all()
CUDA Example-1:
#This example shows how to use CUDA in code op.
import jittor as jt
from jittor import Function
jt.flags.use_cuda = 1
class Func(Function):
def execute(self, a, b):
self.save_vars = a, b
return jt.code(a.shape, a.dtype, [a,b],
cuda_src='''
__global__ static void kernel1(@ARGS_DEF) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (; i<in0_shape0; i+=stride)
}
kernel1<<<(in0_shape0-1)/1024+1, 1024>>>(@ARGS);
''')
def grad(self, grad):
a, b = self.save_vars
return jt.code([a.shape, b.shape], [a.dtype, b.dtype], [a, b, grad],
cuda_src='''
__global__ static void kernel2(@ARGS_DEF) {
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
for (; i<in0_shape0; i+=stride) {
}
}
kernel2<<<(in0_shape0-1)/1024+1, 1024>>>(@ARGS);
''')
a = jt.random([100000])
b = jt.random([100000])
func = Func()
c = func(a,b)
print(c)
print(jt.grad(c, [a, b]))
CUDA Example-2:
#This example shows how to use multi dimension data with CUDA.
import jittor as jt
from jittor import Function
jt.flags.use_cuda = 1
class Func(Function):
def execute(self, a, b):
self.save_vars = a, b
return jt.code(a.shape, a.dtype, [a,b],
cuda_src='''
__global__ static void kernel1(@ARGS_DEF) {
for (int i=blockIdx.x; i<in0_shape0; i+=gridDim.x)
for (int j=threadIdx.x; j<in0_shape1; j+=blockDim.x)
@out(i,j) = @in0(i,j)*@in1(i,j);
}
kernel1<<<32, 32>>>(@ARGS);
''')
def grad(self, grad):
a, b = self.save_vars
return jt.code([a.shape, b.shape], [a.dtype, b.dtype], [a, b, grad],
cuda_src='''
__global__ static void kernel2(@ARGS_DEF) {
for (int i=blockIdx.x; i<in0_shape0; i+=gridDim.x)
for (int j=threadIdx.x; j<in0_shape1; j+=blockDim.x) {
@out0(i,j) = @in2(i,j)*@in1(i,j);
@out1(i,j) = @in2(i,j)*@in0(i,j);
}
}
kernel2<<<32, 32>>>(@ARGS);
''')
a = jt.random((100,100))
b = jt.random((100,100))
func = Func()
c = func(a,b)
print(c)
print(jt.grad(c, [a, b]))
Declaration: VarHolder* code(NanoVector shape, NanoString dtype, vector
jittor_core.ops.copy()
Declaration: VarHolder* copy(VarHolder* x)
jittor_core.ops.cos()
Declaration: VarHolder* cos(VarHolder* x)
jittor_core.ops.cosh()
Declaration: VarHolder* cosh(VarHolder* x)
jittor_core.ops.divide()
Declaration: VarHolder* divide(VarHolder* x, VarHolder* y)
jittor_core.ops.empty()
Declaration: VarHolder* empty(NanoVector shape, NanoString dtype=ns_float32)
jittor_core.ops.equal()
Declaration: VarHolder* equal(VarHolder* x, VarHolder* y)
jittor_core.ops.erf()
Declaration: VarHolder* erf(VarHolder* x)
jittor_core.ops.exp()
Declaration: VarHolder* exp(VarHolder* x)
jittor_core.ops.fetch()
Declaration: VarHolder* fetch(vector
jittor_core.ops.float32()
Declaration: VarHolder* float32_(VarHolder* x)
jittor_core.ops.float64()
Declaration: VarHolder* float64_(VarHolder* x)
jittor_core.ops.floor()
Declaration: VarHolder* floor(VarHolder* x)
jittor_core.ops.floor_divide()
Declaration: VarHolder* floor_divide(VarHolder* x, VarHolder* y)
jittor_core.ops.getitem()
Declaration: VarHolder* getitem(VarHolder* x, VarSlices&& slices)
jittor_core.ops.greater()
Declaration: VarHolder* greater(VarHolder* x, VarHolder* y)
jittor_core.ops.greater_equal()
Declaration: VarHolder* greater_equal(VarHolder* x, VarHolder* y)
jittor_core.ops.index()
Document: *
Index Operator generate index of shape.
It performs equivalent Python-pseudo implementation below:
n = len(shape)-1
x = np.zeros(shape, dtype)
for i0 in range(shape[0]): # 1-st loop
for i1 in range(shape[1]): # 2-nd loop
…… # many loops
for in in range(shape[n]) # n+1 -th loop
x[i0,i1,…,in] = i@dim
Example:
print(jt.index([2,2], 0)())
# output: [[0,0],[1,1]]
print(jt.index([2,2], 1)())
# output: [[0,1],[0,1]]
Declaration: VarHolder* index(NanoVector shape, int64 dim, NanoString dtype=ns_int32) Declaration: vector
jt.index_var(a, 1) similar with jt.index(a.shape, 1)
Declaration: VarHolder* index__(VarHolder* a, int64 dim, NanoString dtype=ns_int32)Document: * shape dependency version of index op
jt.index_var(a) similar with jt.index(a.shape)
Declaration: vector
jittor_core.ops.index_var()
Document: * shape dependency version of index op
jt.index_var(a, 1) similar with jt.index(a.shape, 1)
Declaration: VarHolder* index__(VarHolder* a, int64 dim, NanoString dtype=ns_int32)Document: * shape dependency version of index op
jt.index_var(a) similar with jt.index(a.shape)
Declaration: vector
jittor_core.ops.int16()
Declaration: VarHolder* int16_(VarHolder* x)
jittor_core.ops.int32()
Declaration: VarHolder* int32_(VarHolder* x)
jittor_core.ops.int64()
Declaration: VarHolder* int64_(VarHolder* x)
jittor_core.ops.int8()
Declaration: VarHolder* int8_(VarHolder* x)
jittor_core.ops.left_shift()
Declaration: VarHolder* left_shift(VarHolder* x, VarHolder* y)
jittor_core.ops.less()
Declaration: VarHolder* less(VarHolder* x, VarHolder* y)
jittor_core.ops.less_equal()
Declaration: VarHolder* less_equal(VarHolder* x, VarHolder* y)
jittor_core.ops.log()
Declaration: VarHolder* log(VarHolder* x)
jittor_core.ops.logical_and()
Declaration: VarHolder* logical_and(VarHolder* x, VarHolder* y)
jittor_core.ops.logical_not()
Declaration: VarHolder* logical_not(VarHolder* x)
jittor_core.ops.logical_or()
Declaration: VarHolder* logical_or(VarHolder* x, VarHolder* y)
jittor_core.ops.logical_xor()
Declaration: VarHolder* logical_xor(VarHolder* x, VarHolder* y)
jittor_core.ops.max()
Declaration: VarHolder* reduce_maximum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_maximum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_maximum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.maximum()
Declaration: VarHolder* maximum(VarHolder* x, VarHolder* y)
jittor_core.ops.mean()
Declaration: VarHolder* reduce_mean(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_mean_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_mean__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.min()
Declaration: VarHolder* reduce_minimum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_minimum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_minimum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.minimum()
Declaration: VarHolder* minimum(VarHolder* x, VarHolder* y)
jittor_core.ops.mod()
Declaration: VarHolder* mod(VarHolder* x, VarHolder* y)
jittor_core.ops.multiply()
Declaration: VarHolder* multiply(VarHolder* x, VarHolder* y)
jittor_core.ops.negative()
Declaration: VarHolder* negative(VarHolder* x)
jittor_core.ops.not_equal()
Declaration: VarHolder* not_equal(VarHolder* x, VarHolder* y)
jittor_core.ops.numpy_code()
Document: *
Numpy Code Operator for easily customized op.
Example-1:
def forward_code(np, data):
a = data["inputs"][0]
b = data["outputs"][0]
np.add(a,a,out=b)
def backward_code(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout*2.0)
a = jt.random((5,1))
b = jt.numpy_code(
a.shape,
a.dtype,
[a],
forward_code,
[backward_code],
)
Example-2:
def forward_code(np, data):
a,b = data["inputs"]
c,d = data["outputs"]
np.add(a,b,out=c)
np.subtract(a,b,out=d)
def backward_code1(np, data):
dout = data["dout"]
out = data["outputs"][0]
np.copyto(out, dout)
def backward_code2(np, data):
dout = data["dout"]
out_index = data["out_index"]
out = data["outputs"][0]
if out_index==0:
np.copyto(out, dout)
else:
np.negative(dout, out)
a = jt.random((5,1))
b = jt.random((5,1))
c, d = jt.numpy_code(
[a.shape, a.shape],
[a.dtype, a.dtype],
[a, b],
forward_code,
[backward_code1,backward_code2],
)
Declaration: VarHolder* numpy_code(NanoVector shape, NanoString dtype, vector
jittor_core.ops.pow()
Declaration: VarHolder* pow(VarHolder* x, VarHolder* y)
jittor_core.ops.prod()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.product()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.random()
Declaration: VarHolder* random(NanoVector shape, NanoString dtype=ns_float32, NanoString type=ns_uniform)
jittor_core.ops.reduce()
Declaration: VarHolder* reduce(VarHolder* x, NanoString op, int dim, bool keepdims=false) Declaration: VarHolder* reduce_(VarHolder* x, NanoString op, NanoVector dims=NanoVector(), bool keepdims=false)
jittor_core.ops.reduce_add()
Declaration: VarHolder* reduce_add(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_add_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_add__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_bitwise_and()
Declaration: VarHolder* reduce_bitwise_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_bitwise_or()
Declaration: VarHolder* reduce_bitwise_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_bitwise_xor()
Declaration: VarHolder* reduce_bitwise_xor(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_xor_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_xor__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_logical_and()
Declaration: VarHolder* reduce_logical_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_logical_or()
Declaration: VarHolder* reduce_logical_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_logical_xor()
Declaration: VarHolder* reduce_logical_xor(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_xor_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_xor__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_maximum()
Declaration: VarHolder* reduce_maximum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_maximum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_maximum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_minimum()
Declaration: VarHolder* reduce_minimum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_minimum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_minimum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reduce_multiply()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.reindex()
Document: *
Reindex Operator is a one-to-many map operator. It performs equivalent Python-pseudo implementation below:
# input is x, output is y
n = len(shape)-1
m = len(x.shape)-1
k = len(overflow_conditions)-1
y = np.zeros(shape, x.dtype)
for i0 in range(shape[0]): # 1-st loop
for i1 in range(shape[1]): # 2-nd loop
…… # many loops
for in in range(shape[n]) # n+1 -th loop
if is_overflow(i0,i1,…,in):
y[i0,i1,…,in] = overflow_value
else:
# indexes[i] is a c++ style integer expression consisting of i0,i1,…,in
y[i0,i1,…,in] = x[indexes[0],indexes[1],…,indexes[m]]
# is_overflow is defined as following
def is_overflow(i0,i1,…,in):
return (
indexes[0] < 0 || indexes[0] >= x.shape[0] ||
indexes[1] < 0 || indexes[1] >= x.shape[1] ||
……
indexes[m] < 0 || indexes[m] >= x.shape[m] ||
# overflow_conditions[i] is a c++ style boolean expression consisting of i0,i1,…,in
overflow_conditions[0] ||
overflow_conditions[1] ||
……
overflow_conditions[k]
)
Example Convolution implemented by reindex operation:
def conv(x, w):
N,H,W,C = x.shape
Kh, Kw, _C, Kc = w.shape
assert C==_C
xx = x.reindex([N,H-Kh+1,W-Kw+1,Kh,Kw,C,Kc], [
'i0', # Nid
'i1+i3', # Hid+Khid
'i2+i4', # Wid+KWid
'i5', # Cid
])
ww = w.broadcast_var(xx)
yy = xx*ww
y = yy.sum([3,4,5]) # Kh, Kw, C
return y, yy
Declaration: VarHolder* reindex(VarHolder* x, NanoVector shape, vector
x.reindex(i.shape, [‘@e0(…)’,’@e1(…)’,’@e2(…)’,], extras=[i,j,k])
Declaration: VarHolder* reindex_(VarHolder* x, vector
jittor_core.ops.reindex_reduce()
Document: *
Reindex Reduce Operator is a many-to-one map operator. It performs equivalent Python-pseudo implementation below:
# input is y, output is x
n = len(y.shape)-1
m = len(shape)-1
k = len(overflow_conditions)-1
x = np.zeros(shape, y.dtype)
x[:] = initial_value(op)
for i0 in range(y.shape[0]): # 1-st loop
for i1 in range(y.shape[1]): # 2-nd loop
…… # many loops
for in in range(y.shape[n]) # n+1 -th loop
# indexes[i] is a c++ style integer expression consisting of i0,i1,…,in
xi0,xi1,…,xim = indexes[0],indexes[1],…,indexes[m]
if not is_overflow(xi0,xi1,…,xim):
x[xi0,xi1,…,xim] = op(x[xi0,xi1,…,xim], y[i0,i1,…,in])
# is_overflow is defined as following
def is_overflow(xi0,xi1,…,xim):
return (
xi0 < 0 || xi0 >= shape[0] ||
xi1 < 0 || xi1 >= shape[1] ||
……
xim < 0 || xim >= shape[m] ||
# overflow_conditions[i] is a c++ style boolean expression consisting of i0,i1,…,in
overflow_conditions[0] ||
overflow_conditions[1] ||
……
overflow_conditions[k]
)
Example
Pooling implemented by reindex operation:
def pool(x, size, op):
N,H,W,C = x.shape
h = (H+size-1)//size
w = (W+size-1)//size
return x.reindex_reduce(op, [N,h,w,C], [
"i0", # Nid
f"i1/{size}", # Hid
f"i2/{size}", # Wid
"i3", # Cid
])
Declaration: VarHolder* reindex_reduce(VarHolder* y, NanoString op, NanoVector shape, vector
jittor_core.ops.reindex_var()
Document: * Alias x.reindex([i,j,k]) ->
x.reindex(i.shape, [‘@e0(…)’,’@e1(…)’,’@e2(…)’,], extras=[i,j,k])
Declaration: VarHolder* reindex_(VarHolder* x, vector
jittor_core.ops.reshape()
Declaration: VarHolder* reshape(VarHolder* x, NanoVector shape)
jittor_core.ops.right_shift()
Declaration: VarHolder* right_shift(VarHolder* x, VarHolder* y)
jittor_core.ops.round()
Declaration: VarHolder* round(VarHolder* x)
jittor_core.ops.setitem()
Declaration: VarHolder* setitem(VarHolder* x, VarSlices&& slices, VarHolder* y, NanoString op=ns_void)
jittor_core.ops.sigmoid()
Declaration: VarHolder* sigmoid(VarHolder* x)
jittor_core.ops.sin()
Declaration: VarHolder* sin(VarHolder* x)
jittor_core.ops.sinh()
Declaration: VarHolder* sinh(VarHolder* x)
jittor_core.ops.sqrt()
Declaration: VarHolder* sqrt(VarHolder* x)
jittor_core.ops.subtract()
Declaration: VarHolder* subtract(VarHolder* x, VarHolder* y)
jittor_core.ops.sum()
Declaration: VarHolder* reduce_add(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_add_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_add__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.ops.tan()
Declaration: VarHolder* tan(VarHolder* x)
jittor_core.ops.tanh()
Declaration: VarHolder* tanh(VarHolder* x)
jittor_core.ops.tape()
Declaration: VarHolder* tape(VarHolder* x)
jittor_core.ops.ternary()
Declaration: VarHolder* ternary(VarHolder* cond, VarHolder* x, VarHolder* y)
jittor_core.ops.transpose()
Declaration: VarHolder* transpose(VarHolder* x, NanoVector axes=NanoVector())
jittor_core.ops.uint16()
Declaration: VarHolder* uint16_(VarHolder* x)
jittor_core.ops.uint32()
Declaration: VarHolder* uint32_(VarHolder* x)
jittor_core.ops.uint64()
Declaration: VarHolder* uint64_(VarHolder* x)
jittor_core.ops.uint8()
Declaration: VarHolder* uint8_(VarHolder* x)
jittor_core.ops.unary()
Declaration: VarHolder* unary(VarHolder* x, NanoString op)
jittor_core.ops.where()
Document: *
Where Operator generate index of true condition.
Example:
jt.where([[0,0,1],[1,0,0]])
# return ( [0,2], [1,0] )
Declaration: vector
jittor.Var
这里是Jittor的基础变量类的API文档。该API可以通过my_jittor_var.XXX直接访问。
jittor_core.Var.abs()
Declaration: VarHolder* abs(VarHolder* x)
jittor_core.Var.acos()
Declaration: VarHolder* acos(VarHolder* x)
jittor_core.Var.acosh()
Declaration: VarHolder* acosh(VarHolder* x)
jittor_core.Var.add()
Declaration: VarHolder* add(VarHolder* x, VarHolder* y)
jittor_core.Var.all_()
Declaration: VarHolder* reduce_logical_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.any_()
Declaration: VarHolder* reduce_logical_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.arccos()
Declaration: VarHolder* acos(VarHolder* x)
jittor_core.Var.arccosh()
Declaration: VarHolder* acosh(VarHolder* x)
jittor_core.Var.arcsin()
Declaration: VarHolder* asin(VarHolder* x)
jittor_core.Var.arcsinh()
Declaration: VarHolder* asinh(VarHolder* x)
jittor_core.Var.arctan()
Declaration: VarHolder* atan(VarHolder* x)
jittor_core.Var.arctanh()
Declaration: VarHolder* atanh(VarHolder* x)
jittor_core.Var.arg_reduce()
Declaration: vector
jittor_core.Var.argsort()
Document: *
Argsort Operator Perform an indirect sort by given key or compare function.
x is input, y is output index, satisfy:
x[y[0]] <= x[y[1]] <= x[y[2]] <= … <= x[y[n]]
or
key(y[0]) <= key(y[1]) <= key(y[2]) <= … <= key(y[n])
or
compare(y[0], y[1]) && compare(y[1], y[2]) && …
Example:
index, value = jt.argsort([11,13,12])
# return [0 2 1], [11 12 13]
index, value = jt.argsort([11,13,12], descending=True)
# return [1 2 0], [13 12 11]
index, value = jt.argsort([[11,13,12], [12,11,13]])
# return [[0 2 1],[1 0 2]], [[11 12 13],[11 12 13]]
index, value = jt.argsort([[11,13,12], [12,11,13]], dim=0)
# return [[0 1 0],[1 0 1]], [[11 11 12],[12 13 13]]
Declaration: vector
jittor_core.Var.asin()
Declaration: VarHolder* asin(VarHolder* x)
jittor_core.Var.asinh()
Declaration: VarHolder* asinh(VarHolder* x)
jittor_core.Var.assign()
Declaration: VarHolder* assign(VarHolder* v)
jittor_core.Var.atan()
Declaration: VarHolder* atan(VarHolder* x)
jittor_core.Var.atanh()
Declaration: VarHolder* atanh(VarHolder* x)
jittor_core.Var.binary()
Declaration: VarHolder* binary(VarHolder* x, VarHolder* y, NanoString p)
jittor_core.Var.bitwise_and()
Declaration: VarHolder* bitwise_and(VarHolder* x, VarHolder* y)
jittor_core.Var.bitwise_not()
Declaration: VarHolder* bitwise_not(VarHolder* x)
jittor_core.Var.bitwise_or()
Declaration: VarHolder* bitwise_or(VarHolder* x, VarHolder* y)
jittor_core.Var.bitwise_xor()
Declaration: VarHolder* bitwise_xor(VarHolder* x, VarHolder* y)
jittor_core.Var.bool()
Declaration: VarHolder* bool_(VarHolder* x)
jittor_core.Var.broadcast()
Declaration: VarHolder* broadcast_to(VarHolder* x, NanoVector shape, NanoVector dims=NanoVector()) Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.Var.broadcast_var()
Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.Var.candidate()
Document: *
Candidate Operator Perform an indirect candidate filter by given a fail condition.
x is input, y is output index, satisfy:
not fail_cond(y[0], y[1]) and
not fail_cond(y[0], y[2]) and not fail_cond(y[1], y[2]) and
…
… and not fail_cond(y[m-2], y[m-1])
Where m is number of selected candidates.
Pseudo code:
y = []
for i in range(n):
pass = True
for j in y:
if (@fail_cond):
pass = false
break
if (pass):
y.append(i)
return y
Example:
jt.candidate(jt.random(100,2), '(@x(j,0)>@x(i,0))or(@x(j,1)>@x(i,1))')
# return y satisfy:
# x[y[0], 0] <= x[y[1], 0] and x[y[1], 0] <= x[y[2], 0] and … and x[y[m-2], 0] <= x[y[m-1], 0] and
# x[y[0], 1] <= x[y[1], 1] and x[y[1], 1] <= x[y[2], 1] and … and x[y[m-2], 1] <= x[y[m-1], 1]
Declaration: VarHolder* candidate(VarHolder* x, string&& fail_cond, NanoString dtype=ns_int32)
jittor_core.Var.cast()
Declaration: VarHolder* unary(VarHolder* x, NanoString op)
jittor_core.Var.ceil()
Declaration: VarHolder* ceil(VarHolder* x)
jittor_core.Var.clone()
Declaration: VarHolder* clone(VarHolder* x)
jittor_core.Var.compile_options
Declaration: inline loop_options_t compile_options()
jittor_core.Var.copy()
Declaration: VarHolder* copy(VarHolder* x)
jittor_core.Var.cos()
Declaration: VarHolder* cos(VarHolder* x)
jittor_core.Var.cosh()
Declaration: VarHolder* cosh(VarHolder* x)
jittor_core.Var.data
Document: * Get a numpy array which share the data with the var. Declaration: inline DataView data()
jittor_core.Var.debug_msg()
Declaration: string debug_msg()
jittor_core.Var.detach()
Document:
detach the grad
Declaration: inline VarHolder* detach()
jittor_core.Var.divide()
Declaration: VarHolder* divide(VarHolder* x, VarHolder* y)
jittor_core.Var.double()
Declaration: VarHolder* float64_(VarHolder* x)
jittor_core.Var.dtype
Declaration: inline NanoString dtype()
jittor_core.Var.equal()
Declaration: VarHolder* equal(VarHolder* x, VarHolder* y)
jittor_core.Var.erf()
Declaration: VarHolder* erf(VarHolder* x)
jittor_core.Var.exp()
Declaration: VarHolder* exp(VarHolder* x)
jittor_core.Var.expand()
Declaration: VarHolder* broadcast_to(VarHolder* x, NanoVector shape, NanoVector dims=NanoVector()) Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.Var.expand_as()
Declaration: VarHolder* broadcast_to_(VarHolder* x, VarHolder* y, NanoVector dims=NanoVector())
jittor_core.Var.fetch_sync()
Declaration: ArrayArgs fetch_sync()
jittor_core.Var.float()
Declaration: VarHolder* float32_(VarHolder* x)
jittor_core.Var.float32()
Declaration: VarHolder* float32_(VarHolder* x)
jittor_core.Var.float64()
Declaration: VarHolder* float64_(VarHolder* x)
jittor_core.Var.floor()
Declaration: VarHolder* floor(VarHolder* x)
jittor_core.Var.floor_divide()
Declaration: VarHolder* floor_divide(VarHolder* x, VarHolder* y)
jittor_core.Var.getitem()
Declaration: VarHolder* getitem(VarHolder* x, VarSlices&& slices)
jittor_core.Var.greater()
Declaration: VarHolder* greater(VarHolder* x, VarHolder* y)
jittor_core.Var.greater_equal()
Declaration: VarHolder* greater_equal(VarHolder* x, VarHolder* y)
jittor_core.Var.index()
Document: * shape dependency version of index op
jt.index_var(a, 1) similar with jt.index(a.shape, 1)
Declaration: VarHolder* index__(VarHolder* a, int64 dim, NanoString dtype=ns_int32)Document: * shape dependency version of index op
jt.index_var(a) similar with jt.index(a.shape)
Declaration: vector
jittor_core.Var.index_var()
Document: * shape dependency version of index op
jt.index_var(a, 1) similar with jt.index(a.shape, 1)
Declaration: VarHolder* index__(VarHolder* a, int64 dim, NanoString dtype=ns_int32)Document: * shape dependency version of index op
jt.index_var(a) similar with jt.index(a.shape)
Declaration: vector
jittor_core.Var.int()
Declaration: VarHolder* int32_(VarHolder* x)
jittor_core.Var.int16()
Declaration: VarHolder* int16_(VarHolder* x)
jittor_core.Var.int32()
Declaration: VarHolder* int32_(VarHolder* x)
jittor_core.Var.int64()
Declaration: VarHolder* int64_(VarHolder* x)
jittor_core.Var.int8()
Declaration: VarHolder* int8_(VarHolder* x)
jittor_core.Var.is_stop_fuse()
Declaration: inline bool is_stop_fuse()
jittor_core.Var.is_stop_grad()
Declaration: inline bool is_stop_grad()
jittor_core.Var.item()
Document: * Get one item data Declaration: ItemData item()
jittor_core.Var.left_shift()
Declaration: VarHolder* left_shift(VarHolder* x, VarHolder* y)
jittor_core.Var.less()
Declaration: VarHolder* less(VarHolder* x, VarHolder* y)
jittor_core.Var.less_equal()
Declaration: VarHolder* less_equal(VarHolder* x, VarHolder* y)
jittor_core.Var.log()
Declaration: VarHolder* log(VarHolder* x)
jittor_core.Var.logical_and()
Declaration: VarHolder* logical_and(VarHolder* x, VarHolder* y)
jittor_core.Var.logical_not()
Declaration: VarHolder* logical_not(VarHolder* x)
jittor_core.Var.logical_or()
Declaration: VarHolder* logical_or(VarHolder* x, VarHolder* y)
jittor_core.Var.logical_xor()
Declaration: VarHolder* logical_xor(VarHolder* x, VarHolder* y)
jittor_core.Var.max()
Declaration: VarHolder* reduce_maximum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_maximum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_maximum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.maximum()
Declaration: VarHolder* maximum(VarHolder* x, VarHolder* y)
jittor_core.Var.mean()
Declaration: VarHolder* reduce_mean(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_mean_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_mean__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.min()
Declaration: VarHolder* reduce_minimum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_minimum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_minimum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.minimum()
Declaration: VarHolder* minimum(VarHolder* x, VarHolder* y)
jittor_core.Var.mod()
Declaration: VarHolder* mod(VarHolder* x, VarHolder* y)
jittor_core.Var.multiply()
Declaration: VarHolder* multiply(VarHolder* x, VarHolder* y)
jittor_core.Var.name()
Declaration: inline VarHolder* name(const char* s) Declaration: inline const char* name()
jittor_core.Var.ndim
Declaration: inline int ndim()
jittor_core.Var.negative()
Declaration: VarHolder* negative(VarHolder* x)
jittor_core.Var.not_equal()
Declaration: VarHolder* not_equal(VarHolder* x, VarHolder* y)
jittor_core.Var.numel()
Declaration: inline int64 numel()
jittor_core.Var.numpy()
Declaration: ArrayArgs fetch_sync()
jittor_core.Var.prod()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.product()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce()
Declaration: VarHolder* reduce(VarHolder* x, NanoString op, int dim, bool keepdims=false) Declaration: VarHolder* reduce_(VarHolder* x, NanoString op, NanoVector dims=NanoVector(), bool keepdims=false)
jittor_core.Var.reduce_add()
Declaration: VarHolder* reduce_add(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_add_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_add__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_bitwise_and()
Declaration: VarHolder* reduce_bitwise_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_bitwise_or()
Declaration: VarHolder* reduce_bitwise_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_bitwise_xor()
Declaration: VarHolder* reduce_bitwise_xor(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_bitwise_xor_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_bitwise_xor__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_logical_and()
Declaration: VarHolder* reduce_logical_and(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_and_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_and__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_logical_or()
Declaration: VarHolder* reduce_logical_or(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_or_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_or__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_logical_xor()
Declaration: VarHolder* reduce_logical_xor(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_logical_xor_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_logical_xor__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_maximum()
Declaration: VarHolder* reduce_maximum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_maximum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_maximum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_minimum()
Declaration: VarHolder* reduce_minimum(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_minimum_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_minimum__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reduce_multiply()
Declaration: VarHolder* reduce_multiply(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_multiply_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_multiply__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.reindex()
Document: *
Reindex Operator is a one-to-many map operator. It performs equivalent Python-pseudo implementation below:
# input is x, output is y
n = len(shape)-1
m = len(x.shape)-1
k = len(overflow_conditions)-1
y = np.zeros(shape, x.dtype)
for i0 in range(shape[0]): # 1-st loop
for i1 in range(shape[1]): # 2-nd loop
…… # many loops
for in in range(shape[n]) # n+1 -th loop
if is_overflow(i0,i1,…,in):
y[i0,i1,…,in] = overflow_value
else:
# indexes[i] is a c++ style integer expression consisting of i0,i1,…,in
y[i0,i1,…,in] = x[indexes[0],indexes[1],…,indexes[m]]
# is_overflow is defined as following
def is_overflow(i0,i1,…,in):
return (
indexes[0] < 0 || indexes[0] >= x.shape[0] ||
indexes[1] < 0 || indexes[1] >= x.shape[1] ||
……
indexes[m] < 0 || indexes[m] >= x.shape[m] ||
# overflow_conditions[i] is a c++ style boolean expression consisting of i0,i1,…,in
overflow_conditions[0] ||
overflow_conditions[1] ||
……
overflow_conditions[k]
)
Example Convolution implemented by reindex operation:
def conv(x, w):
N,H,W,C = x.shape
Kh, Kw, _C, Kc = w.shape
assert C==_C
xx = x.reindex([N,H-Kh+1,W-Kw+1,Kh,Kw,C,Kc], [
'i0', # Nid
'i1+i3', # Hid+Khid
'i2+i4', # Wid+KWid
'i5', # Cid
])
ww = w.broadcast_var(xx)
yy = xx*ww
y = yy.sum([3,4,5]) # Kh, Kw, C
return y, yy
Declaration: VarHolder* reindex(VarHolder* x, NanoVector shape, vector
x.reindex(i.shape, [‘@e0(…)’,’@e1(…)’,’@e2(…)’,], extras=[i,j,k])
Declaration: VarHolder* reindex_(VarHolder* x, vector
jittor_core.Var.reindex_reduce()
Document: *
Reindex Reduce Operator is a many-to-one map operator. It performs equivalent Python-pseudo implementation below:
# input is y, output is x
n = len(y.shape)-1
m = len(shape)-1
k = len(overflow_conditions)-1
x = np.zeros(shape, y.dtype)
x[:] = initial_value(op)
for i0 in range(y.shape[0]): # 1-st loop
for i1 in range(y.shape[1]): # 2-nd loop
…… # many loops
for in in range(y.shape[n]) # n+1 -th loop
# indexes[i] is a c++ style integer expression consisting of i0,i1,…,in
xi0,xi1,…,xim = indexes[0],indexes[1],…,indexes[m]
if not is_overflow(xi0,xi1,…,xim):
x[xi0,xi1,…,xim] = op(x[xi0,xi1,…,xim], y[i0,i1,…,in])
# is_overflow is defined as following
def is_overflow(xi0,xi1,…,xim):
return (
xi0 < 0 || xi0 >= shape[0] ||
xi1 < 0 || xi1 >= shape[1] ||
……
xim < 0 || xim >= shape[m] ||
# overflow_conditions[i] is a c++ style boolean expression consisting of i0,i1,…,in
overflow_conditions[0] ||
overflow_conditions[1] ||
……
overflow_conditions[k]
)
Example
Pooling implemented by reindex operation:
def pool(x, size, op):
N,H,W,C = x.shape
h = (H+size-1)//size
w = (W+size-1)//size
return x.reindex_reduce(op, [N,h,w,C], [
"i0", # Nid
f"i1/{size}", # Hid
f"i2/{size}", # Wid
"i3", # Cid
])
Declaration: VarHolder* reindex_reduce(VarHolder* y, NanoString op, NanoVector shape, vector
jittor_core.Var.reindex_var()
Document: * Alias x.reindex([i,j,k]) ->
x.reindex(i.shape, [‘@e0(…)’,’@e1(…)’,’@e2(…)’,], extras=[i,j,k])
Declaration: VarHolder* reindex_(VarHolder* x, vector
jittor_core.Var.requires_grad
Declaration: inline bool get_requires_grad()
jittor_core.Var.right_shift()
Declaration: VarHolder* right_shift(VarHolder* x, VarHolder* y)
jittor_core.Var.round()
Declaration: VarHolder* round(VarHolder* x)
jittor_core.Var.setitem()
Declaration: VarHolder* setitem(VarHolder* x, VarSlices&& slices, VarHolder* y, NanoString op=ns_void)
jittor_core.Var.shape
Declaration: inline NanoVector shape()
jittor_core.Var.share_with()
Declaration: inline VarHolder* share_with(VarHolder* other)
jittor_core.Var.sigmoid()
Declaration: VarHolder* sigmoid(VarHolder* x)
jittor_core.Var.sin()
Declaration: VarHolder* sin(VarHolder* x)
jittor_core.Var.sinh()
Declaration: VarHolder* sinh(VarHolder* x)
jittor_core.Var.sqrt()
Declaration: VarHolder* sqrt(VarHolder* x)
jittor_core.Var.stop_fuse()
Declaration: inline VarHolder* stop_fuse()
jittor_core.Var.stop_grad()
Declaration: inline VarHolder* stop_grad()
jittor_core.Var.subtract()
Declaration: VarHolder* subtract(VarHolder* x, VarHolder* y)
jittor_core.Var.sum()
Declaration: VarHolder* reduce_add(VarHolder* x, int dim, bool keepdims=false) Declaration: VarHolder* reduce_add_(VarHolder* x, NanoVector dims=NanoVector(), bool keepdims=false) Declaration: VarHolder* reduce_add__(VarHolder* x, uint dims_mask, uint keepdims_mask)
jittor_core.Var.swap()
Declaration: inline VarHolder* swap(VarHolder* v)
jittor_core.Var.sync()
Declaration: void sync(bool device_sync = false)
jittor_core.Var.tan()
Declaration: VarHolder* tan(VarHolder* x)
jittor_core.Var.tanh()
Declaration: VarHolder* tanh(VarHolder* x)
jittor_core.Var.tape()
Declaration: VarHolder* tape(VarHolder* x)
jittor_core.Var.ternary()
Declaration: VarHolder* ternary(VarHolder* cond, VarHolder* x, VarHolder* y)
jittor_core.Var.uint16()
Declaration: VarHolder* uint16_(VarHolder* x)
jittor_core.Var.uint32()
Declaration: VarHolder* uint32_(VarHolder* x)
jittor_core.Var.uint64()
Declaration: VarHolder* uint64_(VarHolder* x)
jittor_core.Var.uint8()
Declaration: VarHolder* uint8_(VarHolder* x)
jittor_core.Var.unary()
Declaration: VarHolder* unary(VarHolder* x, NanoString op)
jittor_core.Var.uncertain_shape
Declaration: inline NanoVector uncertain_shape()
jittor_core.Var.update()
Document:
update parameter and global variable,
different from assign, it will stop grad between origin var and assigned var, and will update in the background
Declaration: VarHolder* update(VarHolder* v)
jittor_core.Var.where()
Document: *
Where Operator generate index of true condition.
Example:
jt.where([[0,0,1],[1,0,0]])
# return ( [0,2], [1,0] )
Declaration: vector
jittor.Misc
这里是Jittor的基础算子模块的API文档,该API可以通过jittor.misc.XXX或者jittor.XXX直接访问。
jittor.misc.all(x, dim=[])
jittor.misc.any(x, dim)
jittor.misc.arange(start=0, end=None, step=1, dtype=None)
jittor.misc.arctan2(y, x)
jittor.misc.auto_parallel(n, src, **kw)
auto parallel(CPU and GPU) n-d for loop function like below:
Before:
void inner_func(int n0, int i0, int n1, int i1) {
…
}
for (int i0=0; i0
for (int i1=0; i1
inner_func(n0, i0, n1, i1, …);
After:
@python.jittor.auto_parallel(2) void inner_func(int n0, int i0, int n1, int i1) {
…
}
inner_func(n0, 0, n1, 0, …);
jittor.misc.chunk(x, chunks, dim=0)
Splits a var into a specific number of chunks. Each chunk is a view of the input var.
Last chunk will be smaller if the var size along the given dimension dim is not divisible by chunks.
Args:
input (var) – the var to split.
chunks (int) – number of chunks to return.
dim (int) – dimension along which to split the var.
Example:
>>> x = jt.random((10,3,3))
>>> res = jt.chunk(x, 2, 0)
>>> print(res[0].shape, res[1].shape)
[5,3,3,] [5,3,3,]
jittor.misc.cross(input, other, dim=-1)
Returns the cross product of vectors in dimension dim of input and other.
the cross product can be calculated by (a1,a2,a3) x (b1,b2,b3) = (a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)
input and other must have the same size, and the size of their dim dimension should be 3.
If dim is not given, it defaults to the first dimension found with the size 3.
Args:
input (Tensor) – the input tensor.
other (Tensor) – the second input tensor
dim (int, optional) – the dimension to take the cross-product in.
out (Tensor, optional) – the output tensor.
Example:
>>> input = jt.random((6,3))
>>> other = jt.random((6,3))
>>> jt.cross(input, other, dim=1)
[[-0.42732686 0.6827885 -0.49206433]
[ 0.4651107 0.27036983 -0.5580432 ]
[-0.31933784 0.10543461 0.09676848]
[-0.58346975 -0.21417202 0.55176204]
[-0.40861478 0.01496297 0.38638002]
[ 0.18393655 -0.04907863 -0.17928357]]
>>> jt.cross(input, other)
[[-0.42732686 0.6827885 -0.49206433]
[ 0.4651107 0.27036983 -0.5580432 ]
[-0.31933784 0.10543461 0.09676848]
[-0.58346975 -0.21417202 0.55176204]
[-0.40861478 0.01496297 0.38638002]
[ 0.18393655 -0.04907863 -0.17928357]]
jittor.misc.cumprod(x, dim=0)
jittor.misc.cumsum(x, dim=None)
x: [batch_size, N], jt.var
the cumulative sum of x
jittor.misc.cumsum_backward(np, data)
jittor.misc.cumsum_forward(np, data)
jittor.misc.deg2rad(x)
jittor.misc.diag(x, diagonal=0)
jittor.misc.expand(x, shape)
jittor.misc.flip(x, dim=0)
Reverse the order of a n-D var along given axis in dims.
Args:
input (var) – the input var.
dims (a list or tuple) – axis to flip on.
Example:
>>> x = jt.array([[1,2,3,4]])
>>> x.flip(1)
[[4 3 2 1]]
jittor.misc.gather(x, dim, index)
jittor.misc.hypot(a, b)
jittor.misc.index_fill_(x, dim, indexs, val)
Fills the elements of the input tensor with value val by selecting the indices in the order given in index.
Args:
x - the input tensor dim - dimension along which to index index – indices of input tensor to fill in val – the value to fill with
jittor.misc.kthvalue(input, k, dim=None, keepdim=False)
jittor.misc.log2(x)
jittor.misc.make_grid(x, nrow=8, padding=2, normalize=False, range=None, scale_each=False, pad_value=0)
jittor.misc.median(x, dim=None, keepdim=False)
jittor.misc.meshgrid(*tensors)
Take N tensors, each of which can be 1-dimensional vector, and create N n-dimensional grids, where the i th grid is defined by expanding the i th input over dimensions defined by other inputs.
jittor.misc.nms(dets, thresh)
dets jt.array [x1,y1,x2,y2,score] x(:,0)->x1,x(:,1)->y1,x(:,2)->x2,x(:,3)->y2,x(:,4)->score
jittor.misc.nonzero(x)
Return the index of the elements of input tensor which are not equal to zero.
jittor.misc.normalize(input, p=2, dim=1, eps=1e-12)
Performs L_p normalization of inputs over specified dimension.
Args:
input – input array of any shape
p (float) – the exponent value in the norm formulation. Default: 2
dim (int) – the dimension to reduce. Default: 1
eps (float) – small value to avoid division by zero. Default: 1e-12
Example:
>>> x = jt.random((6,3))
[[0.18777736 0.9739261 0.77647036]
[0.13710196 0.27282116 0.30533272]
[0.7272278 0.5174613 0.9719775 ]
[0.02566639 0.37504175 0.32676998]
[0.0231761 0.5207773 0.70337296]
[0.58966476 0.49547017 0.36724383]]
>>> jt.normalize(x)
[[0.14907198 0.7731768 0.61642134]
[0.31750825 0.63181424 0.7071063 ]
[0.5510936 0.39213243 0.736565 ]
[0.05152962 0.7529597 0.656046 ]
[0.02647221 0.59484214 0.80340654]
[0.6910677 0.58067477 0.4303977 ]]
jittor.misc.python_pass_warper(mod_func, args, kw)
jittor.misc.rad2deg(x)
jittor.misc.randperm(n, dtype='int64')
jittor.misc.repeat(x, *shape)
Repeats this var along the specified dimensions.
Args:
x (var): jittor var.
shape (tuple): int or tuple. The number of times to repeat this var along each dimension.
Example:
>>> x = jt.array([1, 2, 3])
>>> x.repeat(4, 2)
[[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3],
[ 1, 2, 3, 1, 2, 3]]
>>> x.repeat(4, 2, 1).size()
[4, 2, 3,]
jittor.misc.repeat_interleave(x, repeats, dim=None)
jittor.misc.save_image(x, filepath, nrow: int = 8, padding: int = 2, normalize: bool = False, range=None, scale_each=False, pad_value=0, format=None)
jittor.misc.searchsorted(sorted, values, right=False)
Find the indices from the innermost dimension of sorted for each values.
Example:
sorted = jt.array([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]])
values = jt.array([[3, 6, 9], [3, 6, 9]])
ret = jt.searchsorted(sorted, values)
assert (ret == [[1, 3, 4], [1, 2, 4]]).all(), ret
ret = jt.searchsorted(sorted, values, right=True)
assert (ret == [[2, 3, 5], [1, 3, 4]]).all(), ret
sorted_1d = jt.array([1, 3, 5, 7, 9])
ret = jt.searchsorted(sorted_1d, values)
assert (ret == [[1, 3, 4], [1, 3, 4]]).all(), ret
jittor.misc.split(d, split_size, dim)
Splits the tensor into chunks. Each chunk is a view of the original tensor.
If split_size is an integer type, then tensor will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimension dim is not divisible by split_size.
If split_size is a list, then tensor will be split into len(split_size) chunks with sizes in dim according to split_size_or_sections.
Args:
d (Tensor) – tensor to split.
split_size (int) or (list(int)) – size of a single chunk or list of sizes for each chunk
dim (int) – dimension along which to split the tensor.
jittor.misc.stack(x, dim=0)
Concatenates sequence of vars along a new dimension.
All vars need to be of the same size.
Args:
x (sequence of vars) – sequence of vars to concatenate.
dim (int) – dimension to insert. Has to be between 0 and the number of dimensions of concatenated vars (inclusive).
Example:
>>> a1 = jt.array([[1,2,3]])
>>> a2 = jt.array([[4,5,6]])
>>> jt.stack([a1, a2], 0)
[[[1 2 3]
[[4 5 6]]]
jittor.misc.t(x)
jittor.misc.tolist(x)
jittor.misc.topk(input, k, dim=None, largest=True, sorted=True)
jittor.misc.triu_(x, diagonal=0)
Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices input, the other elements of the result tensor out are set to 0.
The upper triangular part of the matrix is defined as the elements on and above the diagonal.
Args:
x – the input tensor.
diagonal – the diagonal to consider,default =0
jittor.misc.unbind(x, dim=0)
Removes a var dimension.
Returns a tuple of all slices along a given dimension, already without it.
Args:
input (var) – the var to unbind
dim (int) – dimension to remove
Example:
a = jt.random((3,3)) b = jt.unbind(a, 0)
jittor.misc.unique(x)
Returns the unique elements of the input tensor.
Args:
x– the input tensor.
jittor.misc.view_as(x, y)
手机扫一扫
移动阅读更方便
你可能感兴趣的文章