Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes.
If there isn't any rectangle, return 0.
Example 1:
Input: [[1,2],[2,1],[1,0],[0,1]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.Example 2:
Input: [[0,1],[2,1],[1,1],[1,0],[2,0]]
Output: 1.00000
Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.Example 3:
Input: [[0,3],[1,2],[3,1],[1,3],[2,1]]
Output: 0
Explanation: There is no possible rectangle to form from these points.Example 4:
Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.
Note:
Approach #1: Math. [Java]
class Solution {
public double minAreaFreeRect(int[][] points) {
int len = points.length;
if (len < 4) return 0.0;
double ret = Double.MAX_VALUE;
Map
for (int i = 0; i < len; ++i) {
for (int j = i+1; j < len; ++j) {
long diagonal = (points[i][0] - points[j][0]) * (points[i][0] - points[j][0]) +
(points[i][1] - points[j][1]) * (points[i][1] - points[j][1]);
double centerX = (double)(points[i][0] + points[j][0]) / 2;
double centerY = (double)(points[i][1] + points[j][1]) / 2;
String key = "" + diagonal + "+" + centerX + "+" + centerY;
if (map.get(key) == null) map.put(key, new ArrayList
map.get(key).add(new int[]{i, j});
}
}
for (String key : map.keySet()) {
List<int\[\]> list = map.get(key);
if (list.size() < 2) continue;
for (int i = 0; i < list.size(); ++i) {
for (int j = i+1; j < list.size(); ++j) {
int p1 = list.get(i)\[0\];
int p2 = list.get(j)\[0\];
int p3 = list.get(j)\[1\];
double x = Math.sqrt((points\[p1\]\[0\] - points\[p2\]\[0\]) \* (points\[p1\]\[0\] - points\[p2\]\[0\])
+ (points\[p1\]\[1\] - points\[p2\]\[1\]) \* (points\[p1\]\[1\] - points\[p2\]\[1\]));
double y = Math.sqrt((points\[p1\]\[0\] - points\[p3\]\[0\]) \* (points\[p1\]\[0\] - points\[p3\]\[0\])
+ (points\[p1\]\[1\] - points\[p3\]\[1\]) \* (points\[p1\]\[1\] - points\[p3\]\[1\]));
double area = x \* y;
ret = Math.min(ret, area);
}
}
}
return ret == Double.MAX\_VALUE ? 0.0 : ret;
}
}
Analysis:
1. Two diagonals of a rectangle bisect each other, and are of equal length.
2. The map's key is String including diagonal length and coordinate of the diagonal center; map's vlaue is the index of two points forming the diagonal.
Reference:
https://leetcode.com/problems/minimum-area-rectangle-ii/discuss/208361/JAVA-O(n2)-using-Map
手机扫一扫
移动阅读更方便
你可能感兴趣的文章