Schur不等式(舒尔不等式)
阅读原文时间:2023年07月08日阅读:1

舒尔(

Schur

\texttt{Schur}

Schur)不等式1

=================================================

Schur

\texttt{Schur}

Schur 不等式:

x

y

z

x,y,z

x,y,z 为非负实数,

r

r

r 为实数时,下列不等式成立

x

r

(

x

y

)

(

x

z

)

+

y

r

(

y

x

)

(

y

z

)

+

z

r

(

z

x

)

(

z

y

)

0

x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

  • r

    =

    0

    r=0

    r=0 时

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    x

    )

    (

    y

    z

    )

    +

    (

    z

    x

    )

    (

    z

    y

    )

    0

    (x-y)(x-z)+(y-x)(y-z)+(z-x)(z-y)\ge 0

    (x−y)(x−z)+(y−x)(y−z)+(z−x)(z−y)≥0

    x

    2

    +

    y

    2

    +

    z

    2

    x

    y

    y

    z

    z

    x

    0

    \Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge 0

    ⇔x2+y2+z2−xy−yz−zx≥0

    1

    2

    {

    (

    x

    y

    )

    2

    +

    (

    y

    z

    )

    2

    +

    (

    z

    x

    )

    2

    }

    0

    \Leftrightarrow \frac{1}{2}\{(x-y)^2+(y-z)^2+(z-x)^2\} \ge 0

    ⇔21​{(x−y)2+(y−z)2+(z−x)2}≥0

  • r

    =

    1

    r=1

    r=1 时

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y)\ge 0

    x(x−y)(x−z)+y(y−x)(y−z)+z(z−x)(z−y)≥0

    x

    3

    +

    y

    3

    +

    z

    3

    +

    3

    x

    y

    z

    x

    y

    (

    x

    +

    y

    )

    +

    y

    z

    (

    y

    +

    z

    )

    +

    z

    x

    (

    z

    +

    x

    )

    \Leftrightarrow x^3+y^3+z^3+3xyz\ge xy(x+y)+yz(y+z)+zx(z+x)

    ⇔x3+y3+z3+3xyz≥xy(x+y)+yz(y+z)+zx(z+x)

  • r

    =

    1

    2

    r=\dfrac{1}{2}

    r=21​ 时

    x

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    (

    z

    x

    )

    (

    z

    y

    )

    0

    \sqrt{x}(x-y)(x-z)+\sqrt{y}(y-x)(y-z)+\sqrt{z}(z-x)(z-y)\ge 0

    x

    ​(x−y)(x−z)+y

    ​(y−x)(y−z)+z

    ​(z−x)(z−y)≥0

    x

    3

    2

    (

    y

    +

    z

    x

    )

    +

    y

    3

    2

    (

    z

    +

    x

    y

    )

    +

    z

    3

    2

    (

    x

    +

    y

    z

    )

    x

    y

    z

    (

    1

    x

    +

    1

    y

    +

    1

    z

    )

    \Leftrightarrow x^{\frac{3}{2}}(y+z-x)+y^{\frac{3}{2}}(z+x-y)+z^{\frac{3}{2}}(x+y-z)\le xyz\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)

    ⇔x23​(y+z−x)+y23​(z+x−y)+z23​(x+y−z)≤xyz(x

    ​1​+y

    ​1​+z

    ​1​)

证明:
左边是

x

,

y

,

z

x,y,z

x,y,z 的对称式,设

x

y

z

x\ge y\ge z

x≥y≥z 不失一般性.

  1. r

    >

    0

    r>0

    r>0 时

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)

    =

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    =(x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)

    =(x−y){xr(x−z)−yr(y−z)}+zr(x−z)(y−z)

    x

    r

    y

    r

    0

    ,

    x

    z

    y

    z

    0

    x^r\ge y^r \ge 0,\ x-z\ge y-z \ge 0

    xr≥yr≥0, x−z≥y−z≥0
    因为

    (

    x

    y

    )

    [

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    ]

    0

    (x-y)\left[x^r(x-z)-y^r(y-z)\right]\ge 0\text{,}

    (x−y)[xr(x−z)−yr(y−z)]≥0,又因为

    z

    r

    0

    ,

    x

    z

    0

    ,

    y

    z

    0

    ,

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    z^r\ge 0,\ x-z\ge 0,\ y-z \ge 0, z^r(x-z)(y-z)\ge 0

    zr≥0, x−z≥0, y−z≥0,zr(x−z)(y−z)≥0根据

    (

    x

    y

    )

    {

    x

    r

    (

    x

    z

    )

    y

    r

    (

    y

    z

    )

    }

    +

    z

    r

    (

    x

    z

    )

    (

    y

    z

    )

    0

    (x-y)\{x^r(x-z)-y^r(y-z)\}+z^r(x-z)(y-z)\ge 0

    (x−y){xr(x−z)−yr(y−z)}+zr(x−z)(y−z)≥0所以,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

  2. r

    0

    r\le 0

    r≤0 时

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)

    =

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    (

    y

    z

    )

    {

    z

    r

    (

    x

    z

    )

    y

    r

    (

    x

    y

    )

    }

    =x^r(x-y)(x-z)+(y-z)\{z^r(x-z)-y^r(x-y)\}

    =xr(x−y)(x−z)+(y−z){zr(x−z)−yr(x−y)}同理可得,

    x

    r

    (

    x

    y

    )

    (

    x

    z

    )

    +

    y

    r

    (

    y

    x

    )

    (

    y

    z

    )

    +

    z

    r

    (

    z

    x

    )

    (

    z

    y

    )

    0

    x^r(x-y)(x-z)+y^r(y-x)(y-z)+z^r(z-x)(z-y)\ge 0

    xr(x−y)(x−z)+yr(y−x)(y−z)+zr(z−x)(z−y)≥0

1 

a

,

b

,

c

a,b,c

a,b,c 为非负实数时,请证明以下不等式。

(

a

+

b

c

)

(

b

+

c

a

)

(

c

+

a

b

)

a

b

c

(a+b-c)(b+c-a)(c+a-b)\le abc

(a+b−c)(b+c−a)(c+a−b)≤abc

2 非负实数

a

,

b

,

c

a,b,c

a,b,c 有

a

+

b

+

c

=

1

a+b+c=1

a+b+c=1,请证明以下不等式。

a

3

+

b

3

+

c

3

+

6

a

b

c

1

4

a^3+b^3+c^3+6abc\ge \frac{1}{4}

a3+b3+c3+6abc≥41​

广告

(现在使用,人人均可获得300元大奖)


手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章