这学期的信息论与编码的课设需要用编程语言实现霍夫曼、费诺以及香农编码,要具备在windows下的可视化操作界面,因此就选用PyQt作为开发工具,本篇博客记录一下PyQt的基础以及课设的实例
参考:
《PyQt5从入门到实践》
Python 算法(2) 哈夫曼编码 Huffman Encoding
PyQt就是Qt的python接口,目前主要有3个版本:PyQt3、PyQt4以及PyQt5,其中PyQt5不向下兼容PyQt4,且官方默认只提供对python3.x的支持
PyQt5的主要的类如下:
PyQt5的主要模块如下:
开发的工具如下:
这里就记录一下如何在Pycharm中配置PyQt5,首先要安装需要的工具包:
接着要配置一些工具(PyQt5创建GUI图形用户界面程序时,会生成扩展名为.ui的文件,因此需要工具将其转换为.py文件;同时还需要PyQt5的设计器):
添加安装pyqt5designer模块时自动安装的designer.exe,在Working directory中输入$ProjectFileDir$
,表示项目文件目录
添加将.ui文件转换为.py文件的转换工具,选择虚拟环境目录下的python.exe(Scripts文件夹中),然后在Arguments输入将.ui文件转换为.py文件的命令,在Working directory中输入$FileDir$
,表示.ui文件所在的路径
完成配置后,在Tools->External Tools中可以看到这两个工具:
Qt Designer是一个可视化GUI设计工具,可以在Tools中直接打开,直接显示新建窗体窗口,列举了Qt支持的几种窗口类型:
选择后就可以开始设计,Qt Designer的几个主要组成部分如下:
同时可以在Widget Box工具箱中选用相应的控件即可开始设计自己的GUI
生成了代码后还需要设置程序入口并显示,代码如下:
import sys
import coding # coding就是通过.ui文件生成的.py文件,.ui文件的名字是什么就import什么
from PyQt5 import QtCore, QtGui, QtWidgets
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
MainWindow = QtWidgets.QMainWindow()
ui = coding.Ui_MainWindow()
ui.setupUi(MainWindow)
MainWindow.show()
sys.exit(app.exec_())
关于这个程序的理解:
sys模块提供访问由解释器使用或维护的变量的接口,并提供了一些函数和解释器进行交互,操控python运行时的环境
QtWidgets模块包含了构建界面的一系列UI元素组件
Ui_MainWindow就是.ui文件转换为.py文件生成的类,setupUi就是对对象进行初始化设置
MainWindow.show()用于显示窗体
PyQt5的窗口就是向用户展示信息的可视化界面,是GUI程序的基本单元
PyQt5窗口创建完成后,可以通过属性对窗口进行设置,这些属性可以在属性编辑器中进行设置,也可以直接通过代码来实现,其常用的属性如下:
窗口的对象名称,相当于窗口的标识,是唯一的,在编写代码时,对窗口的任何设置和使用都是通过该名称进行操作的,默认名称是MainWindow,可通过objectName来进行修改
如果需要使用python代码进行设置的话,需要使用一个函数:MainWindow.setObjectName("MainWindow")
窗口的标题栏名称通过windowTitle设置,也可以直接用python中的函数:MainWindow.setWindowTitle("标题栏")
窗口的大小通过geometry属性设置,也可以直接用python中的函数:MainWindow.resize(252,100)
窗口的样式可以使用setWindowFlags()函数设置:setWindowFlags(Qt.WindowFlags)
,其中Qt.WindowFlags参数表示要设置的窗口样式
信号(signal)与槽(slot)是Qt的核心机制,也是进行PyQt5编程时对象之间通信的基础,在PyQt5中,每一个QObject对象(包括各种窗口和控件)都支持信号与槽机制,通过信号与槽的关联就可以实现对象之间的通信,当信号发射时,连接的槽函数(方法)将会自动执行,在PyQt5中,信号与槽是通过对象的signal.connect()方法进行连接
PyQt5的窗口控件中有很多内置的信号与槽,PyQt5中使用信号与槽的主要特点如下:
接下来用一个简例通过信号与槽实现一个单击按钮关闭主窗口的效果:
首先添加一个PushButton,并设置按钮的text属性为"关闭"
在菜单栏中选择"编辑信号/槽",然后选中关闭按钮,按住鼠标左键拖动至窗口的空白区域
松开鼠标后,会自动弹出配置连接,选中"显示从QWidget继承的信号和槽"复选框,然后在上方的信号与槽列表分别选中"clicked()"和"close()",完成信号与槽的关联
使用PyUIC工具将.ui文件转换为.py文件,然后编写python显示窗口并测试
控件是用户可以用来输入或操作数据的对象,在PyQt5中控件的基类是QFrame类,而QFrame类继承自QWidget类,QWidget类是所有用户界面对象的基类
Qt Designer中默认对控件进行了分组:
文本类控件主要用来显示或者编辑文本信息
主要用于显示用户不能编辑的文本,标识窗体上的对象,对应PyQt5中的QLabel类(QLabel类属于QtWidgets),Label控件本质上是QLabel类的一个对象
设置标签文本:在Qt Designer中的属性编辑器中设置text属性/用QLabel类的setText()方法
设置标签文本的对齐方式:在Qt Designer中的属性编辑器中设置alignment属性中的Horizontal和Vertical/用QLabel类的setAlignment()方法
Horizontal用于设置标签文本的水平对齐方式
Vertical用于设置标签文本的垂直对齐方式
设置文本换行显示:在标签宽度不足的情况下,系统会默认只显示部分文字,可以设置标签中的文本换行显示,在Qt Designer中的属性编辑器中将wordWrap属性后面的复选框选中/用QLabel类的setWordWrap方法
获取标签文本:用QLabel类的text()方法
LineEdit是单行文本框,该控件只能输入单行字符串,对应PyQt5中的QLineEdit类,该类的常用方法如下:
QLineEdit类的常用信号:
TextEdit是多行文本框控件,主要用来显示多行的文本内容,当文本内容超出控件的显示范围时,该控件将显示垂直滚动条,该类的常用方法如下:
按钮类控件主要用来执行一些命令操作
PushButton允许用户通过单击来执行操作,既可以显示文本,也可以显示图像,当该控件被单击时,它看起来的状态像是被按下,然后被释放,对应PyQt5中的QPushButton类,该类的常用方法如下:
PushButton按钮中最常用的信号是clicked,当按钮被单击时,会发射该信号执行相应的操作
利用编程语言实现霍夫曼、费诺、香农编码
编码要求
编程要求
首先要在Qt designer中创建几个窗口,然后要将各个按键对应显示窗口的函数,然后根据几个编码过程编写代码然后在相应的控件上显示即可,这里给出三个编码的核心代码:
霍夫曼编码:
def Hoffman_Coding(self):
Q,N,R,sp = self.Read_Input()
if Q == 0 and N == 0 and R == 0 and sp == 0:
self.ui_error.show()
return 0
all_sym = self.Get_All_Symbol(Q,N,R,sp) # all nodes
if R == 2:
hoffman_tree = self.Hoffman_Tree_Generate_2(Q,N,sp,all_sym)
hoffman_code = self.Coding_2(all_sym,hoffman_tree)
outcome = ''
for i in range(len(all_sym)):
outcome = outcome + str(round(all_sym[i].P,6)) + ' ' + hoffman_code[i] + ' ' +'\n'
# print(outcome)
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(N,R,sp,all_sym,hoffman_code)
elif R == 3:
hoffman_tree = self.Hoffman_Tree_Generate_3(Q,N,sp,all_sym)
hoffman_code = self.Coding_3(all_sym, hoffman_tree)
outcome = ''
for i in range(len(all_sym)):
outcome = outcome + str(round(all_sym[i].P, 6)) + ' ' + hoffman_code[i] + ' ' + '\n'
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(N, R, sp, all_sym, hoffman_code)
elif R == 4:
hoffman_tree = self.Hoffman_Tree_Generate_4(Q,N,sp,all_sym)
hoffman_code = self.Coding_4(all_sym, hoffman_tree)
outcome = ''
for i in range(len(all_sym)):
outcome = outcome + str(round(all_sym[i].P, 6)) + ' ' + hoffman_code[i] + ' ' + '\n'
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(N, R, sp, all_sym, hoffman_code)
elif R == 5:
hoffman_tree = self.Hoffman_Tree_Generate_5(Q,N,sp,all_sym)
hoffman_code = self.Coding_5(all_sym, hoffman_tree)
outcome = ''
for i in range(len(all_sym)):
outcome = outcome + str(round(all_sym[i].P, 6)) + ' ' + hoffman_code[i] + ' ' + '\n'
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(N, R, sp, all_sym, hoffman_code)
def Hoffman_Tree_Generate_2(self,Q,N,sp,all_sym):
queue = all_sym[:]
while len(queue) > 1:
queue.sort(key=lambda item:item.P)
node_child1 = queue.pop(0)
node_child2 = queue.pop(0)
node_father = Node_2(node_child1.P + node_child2.P)
node_father.child1 = node_child1
node_father.child2 = node_child2
node_child1.father = node_father
node_child2.father = node_father
queue.append(node_father)
queue[0].father = None
return queue[0]
def Hoffman_Tree_Generate_3(self,Q,N,sp,all_sym):
queue = all_sym[:]
while len(queue) > 1:
queue.sort(key=lambda item:item.P)
node_child1 = queue.pop(0)
node_child2 = queue.pop(0)
node_child3 = queue.pop(0)
node_father = Node_3(node_child1.P + node_child2.P + node_child3.P)
node_father.child1 = node_child1
node_father.child2 = node_child2
node_father.child3 = node_child3
node_child1.father = node_father
node_child2.father = node_father
node_child3.father = node_father
queue.append(node_father)
queue[0].father = None
return queue[0]
def Hoffman_Tree_Generate_4(self,Q,N,sp,all_sym):
queue = all_sym[:]
while len(queue) > 1:
queue.sort(key=lambda item:item.P)
node_child1 = queue.pop(0)
node_child2 = queue.pop(0)
node_child3 = queue.pop(0)
node_child4 = queue.pop(0)
node_father = Node_4(node_child1.P + node_child2.P + node_child3.P + node_child4.P)
node_father.child1 = node_child1
node_father.child2 = node_child2
node_father.child3 = node_child3
node_father.child4 = node_child4
node_child1.father = node_father
node_child2.father = node_father
node_child3.father = node_father
node_child4.father = node_father
queue.append(node_father)
queue[0].father = None
return queue[0]
def Hoffman_Tree_Generate_5(self,Q,N,sp,all_sym):
queue = all_sym[:]
while len(queue) > 1:
queue.sort(key=lambda item:item.P)
node_child1 = queue.pop(0)
node_child2 = queue.pop(0)
node_child3 = queue.pop(0)
node_child4 = queue.pop(0)
node_child5 = queue.pop(0)
node_father = Node_5(node_child1.P + node_child2.P + node_child3.P + node_child4.P + node_child5.P)
node_father.child1 = node_child1
node_father.child2 = node_child2
node_father.child3 = node_child3
node_father.child4 = node_child4
node_father.child5 = node_child5
node_child1.father = node_father
node_child2.father = node_father
node_child3.father = node_father
node_child4.father = node_father
node_child5.father = node_father
queue.append(node_father)
queue[0].father = None
return queue[0]
def Coding_2(self,all_sym,root):
codes = ['']*len(all_sym)
for i in range(len(all_sym)):
node_tem = all_sym[i]
while node_tem != root:
if node_tem.check_num_of_child() == 1:
codes[i] = '0' + codes[i]
else:
codes[i] = '1' + codes[i]
node_tem = node_tem.father
print(codes)
return codes
def Coding_3(self, all_sym, root):
codes = ['']*len(all_sym)
for i in range(len(all_sym)):
node_tem = all_sym[i]
while node_tem != root:
if node_tem.check_num_of_child() == 1:
codes[i] = '0' + codes[i]
elif node_tem.check_num_of_child() == 2:
codes[i] = '1' + codes[i]
else:
codes[i] = '2' + codes[i]
node_tem = node_tem.father
print(codes)
return codes
def Coding_4(self, all_sym, root):
codes = ['']*len(all_sym)
for i in range(len(all_sym)):
node_tem = all_sym[i]
while node_tem != root:
if node_tem.check_num_of_child() == 1:
codes[i] = '0' + codes[i]
elif node_tem.check_num_of_child() == 2:
codes[i] = '1' + codes[i]
elif node_tem.check_num_of_child() == 3:
codes[i] = '2' + codes[i]
else:
codes[i] = '3' + codes[i]
node_tem = node_tem.father
print(codes)
return codes
def Coding_5(self, all_sym, root):
codes = ['']*len(all_sym)
for i in range(len(all_sym)):
node_tem = all_sym[i]
while node_tem != root:
if node_tem.check_num_of_child() == 1:
codes[i] = '0' + codes[i]
elif node_tem.check_num_of_child() == 2:
codes[i] = '1' + codes[i]
elif node_tem.check_num_of_child() == 3:
codes[i] = '2' + codes[i]
elif node_tem.check_num_of_child() == 4:
codes[i] = '3' + codes[i]
else:
codes[i] = '4' + codes[i]
node_tem = node_tem.father
print(codes)
return codes
def Get_All_Symbol(self,Q,N,R,sp):
all_sym = []
symbol_sequence = []
nodes = []
for i in range(N):
symbol_sequence.append(0)
for i in range(pow(Q,N)):
j = N-1
P = sp[symbol_sequence[0]]
for k in range(N):
if k != 0:
P *= sp[symbol_sequence[k]]
if R == 2:
all_sym.append(Node_2(P))
elif R == 3:
all_sym.append(Node_3(P))
elif R == 4:
all_sym.append(Node_4(P))
elif R == 5:
all_sym.append(Node_5(P))
while symbol_sequence[j] == Q-1:
symbol_sequence[j] = 0
j -= 1
if j == -1:
# print(len(all_sym))
if( int((Q - R)/(R - 1))!=(Q - R)/(R - 1) ):
Q_expand = int((Q - R)/(R - 1)+1)*(R - 1)+R
for i in range(Q_expand - Q):
if R == 2:
all_sym.append(Node_2(0))
elif R == 3:
all_sym.append(Node_3(0))
elif R == 4:
all_sym.append(Node_4(0))
elif R == 5:
all_sym.append(Node_5(0))
return all_sym
symbol_sequence[j] += 1
def Read_Input(self):
Q = int(self.lineEdit_5.text()) # num of symbol
N = int(self.lineEdit_6.text()) # num of sequence
R = int(self.lineEdit_7.text()) # num of radix
text = self.textEdit.toPlainText()
sp = self.Get_Symbol_Probability(text) # symbol probability
if Q<8 or Q>15 or N<1 or N>3 or R<2 or R>5 or len(sp)!=Q or sum(sp)<0.99999:
# self.ui_error.show()
# print(sum(sp))
return 0,0,0,0
else:
# print(Q,N,R,sp)
return Q,N,R,sp
def Str_Find_HH(self,str): # HH:huan hang '\n'
n = len(str)
pos = list()
for i in range(n):
if str[i] == '\n':
pos.append(i)
# print(pos)
return pos
def Get_Symbol_Probability(self,str):
n = len(str)
pos = self.Str_Find_HH(str)
sp = list()
n_pos = len(pos)
for i in range(n_pos):
if i == 0:
sp.append(float(str[0:pos[i]]))
else:
sp.append(float(str[pos[i - 1] + 1:pos[i]]))
# print(sp)
return sp
def Calculate_Performance_Index(self,N,R,sp,all_sym,codes):
HU = 0
l_avr = 0
for i in range(len(sp)):
HU += -sp[i]*math.log2(sp[i])
for i in range(len(all_sym)):
l_avr += all_sym[i].P*len(codes[i])
effi = HU*N/l_avr/math.log2(R)
self.lineEdit_2.setText(str(round(HU,5)))
self.lineEdit_3.setText(str(round(l_avr,2)))
self.lineEdit_4.setText(str(round(effi*100,4))+'%')
费诺编码:
def Feno_Coding(self):
Q,sp = self.Read_Input()
if Q == 0 and sp == 0:
self.ui_error.show()
return
sp_node = []
self.feno_code = ['']*len(sp)
sp.sort(reverse=True)
for i in range(len(sp)):
sp_node.append(Node(sp[i],i))
self.Coding(sp_node)
# print(self.feno_code)
outcome = ''
for i in range(len(sp)):
outcome = outcome + str(sp[i]) + ' ' + self.feno_code[i] + ' ' + '\n'
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(sp,self.feno_code)
def Coding(self,sp_node):
if len(sp_node) == 1:
return
findPos = 0
diff_c = 1
sum1 = 0
sum2 = 0
left_flag = 0 # 0 means left bigger than right
for i in range(len(sp_node)-1):
for j in range(i+1):
sum1 += sp_node[j].P
for k in range(i+1,len(sp_node)):
sum2 += sp_node[k].P
if abs(sum1-sum2) < diff_c:
diff_c = abs(sum1-sum2)
if sum1 < sum2:
left_flag = 1
else:
left_flag = 0
findPos = i
sum1 = 0
sum2 = 0
for i in range(len(sp_node)):
if left_flag:
if i <= findPos:
self.feno_code[sp_node[i].pos] += '1'
else:
self.feno_code[sp_node[i].pos] += '0'
else:
if i <= findPos:
self.feno_code[sp_node[i].pos] += '0'
else:
self.feno_code[sp_node[i].pos] += '1'
left = []
right = []
for i in range(findPos+1):
left.append(sp_node[i])
for i in range(findPos+1,len(sp_node)):
right.append(sp_node[i])
self.Coding(left)
self.Coding(right)
def Read_Input(self):
Q = int(self.lineEdit.text()) # num of symbol
text = self.textEdit.toPlainText()
sp = self.Get_Symbol_Probability(text) # symbol probability
if Q<10 or len(sp)!=Q or sum(sp)<0.99999:
# self.ui_error.show()
# print(sum(sp))
return 0,0,0,0
else:
# print(Q,N,R,sp)
return Q,sp
def Str_Find_HH(self,str): # HH:huan hang '\n'
n = len(str)
pos = list()
for i in range(n):
if str[i] == '\n':
pos.append(i)
# print(pos)
return pos
def Get_Symbol_Probability(self,str):
n = len(str)
pos = self.Str_Find_HH(str)
sp = list()
n_pos = len(pos)
for i in range(n_pos):
if i == 0:
sp.append(float(str[0:pos[i]]))
else:
sp.append(float(str[pos[i - 1] + 1:pos[i]]))
# print(sp)
return sp
def Calculate_Performance_Index(self,sp,codes):
HU = 0
l_avr = 0
for i in range(len(sp)):
HU += -sp[i]*math.log2(sp[i])
for i in range(len(sp)):
l_avr += sp[i]*len(codes[i])
effi = HU/l_avr/math.log2(2)
self.lineEdit_2.setText(str(round(HU,5)))
self.lineEdit_3.setText(str(round(l_avr,2)))
self.lineEdit_4.setText(str(round(effi*100,4))+'%')
香农编码:
def Shannon_Coding(self):
Q,sp = self.Read_Input()
if Q == 0 and sp == 0:
self.ui_error.show()
return
shannon_code = ['']*len(sp)
sp.sort(reverse=True)
for i in range(len(sp)):
P_acc = 0
code = ''
l = int(-math.log2(sp[i])+1)
for j in range(i):
P_acc += sp[j]
while True:
P_acc *= 2
if P_acc >= 1:
code += '1'
else:
code += '0'
if len(code) == l:
break
P_acc -= int(P_acc)
if P_acc == 0:
if(len(code)<l):
code += '0'*(l-len(code))
break
shannon_code[i] = code[:l]
# print(shannon_code)
outcome = ''
for i in range(len(sp)):
outcome = outcome + str(sp[i]) + ' ' + shannon_code[i] + ' ' + '\n'
self.textEdit_2.setPlainText(outcome)
self.Calculate_Performance_Index(sp,shannon_code)
def Read_Input(self):
Q = int(self.lineEdit.text()) # num of symbol
text = self.textEdit.toPlainText()
sp = self.Get_Symbol_Probability(text) # symbol probability
if Q<10 or len(sp)!=Q or sum(sp)<0.99999:
# self.ui_error.show()
# print(sum(sp))
return 0,0,0,0
else:
# print(Q,N,R,sp)
return Q,sp
def Str_Find_HH(self,str): # HH:huan hang '\n'
n = len(str)
pos = list()
for i in range(n):
if str[i] == '\n':
pos.append(i)
# print(pos)
return pos
def Get_Symbol_Probability(self,str):
n = len(str)
pos = self.Str_Find_HH(str)
sp = list()
n_pos = len(pos)
for i in range(n_pos):
if i == 0:
sp.append(float(str[0:pos[i]]))
else:
sp.append(float(str[pos[i - 1] + 1:pos[i]]))
# print(sp)
return sp
def Calculate_Performance_Index(self,sp,codes):
HU = 0
l_avr = 0
for i in range(len(sp)):
HU += -sp[i]*math.log2(sp[i])
for i in range(len(sp)):
l_avr += sp[i]*len(codes[i])
effi = HU/l_avr/math.log2(2)
self.lineEdit_2.setText(str(round(HU,5)))
self.lineEdit_3.setText(str(round(l_avr,2)))
self.lineEdit_4.setText(str(round(effi*100,4))+'%')
程序的入口:
import sys
import coding
from PyQt5 import QtCore, QtGui, QtWidgets
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
MainWindow = QtWidgets.QMainWindow()
ui = coding.Ui_MainWindow()
ui.setupUi(MainWindow)
MainWindow.show()
sys.exit(app.exec_())
这里还附上完整的课程设计报告可供参考:
手机扫一扫
移动阅读更方便
你可能感兴趣的文章