Vladik and Entertaining Flags
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
In his spare time Vladik estimates beauty of the flags.
Every flag could be represented as the matrix n × m which consists of positive integers.
Let's define the beauty of the flag as number of components in its matrix. We call component a set of cells with same numbers and between any pair of cells from that set there exists a path through adjacent cells from same component. Here is the example of the partitioning some flag matrix into components:
But this time he decided to change something in the process. Now he wants to estimate not the entire flag, but some segment. Segment of flag can be described as a submatrix of the flag matrix with opposite corners at (1, l) and (n, r), where conditions 1 ≤ l ≤ r ≤ m are satisfied.
Help Vladik to calculate the beauty for some segments of the given flag.
Input
First line contains three space-separated integers n, m, q (1 ≤ n ≤ 10, 1 ≤ m, q ≤ 105) — dimensions of flag matrix and number of segments respectively.
Each of next n lines contains m space-separated integers — description of flag matrix. All elements of flag matrix is positive integers not exceeding 106.
Each of next q lines contains two space-separated integers l, r (1 ≤ l ≤ r ≤ m) — borders of segment which beauty Vladik wants to know.
Output
For each segment print the result on the corresponding line.
Example
input
4 5 4
1 1 1 1 1
1 2 2 3 3
1 1 1 2 5
4 4 5 5 5
1 5
2 5
1 2
4 5
output
6
7
3
4
Note
Partitioning on components for every segment from first test case:
分析:给一个10*n矩阵,q次询问l到r内联通块个数;
用线段树维护区间,每个节点维护左右两边即可,合并区间时使用”并查集“实现;
代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
手机扫一扫
移动阅读更方便
你可能感兴趣的文章