DeepFool: a simple and accurate method to fool deep neural networks
阅读原文时间:2023年07月11日阅读:1

目录

Moosavidezfooli S, Fawzi A, Frossard P, et al. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks[C]. computer vision and pattern recognition, 2016: 2574-2582.

@article{moosavidezfooli2016deepfool:,

title={DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks},

author={Moosavidezfooli, Seyedmohsen and Fawzi, Alhussein and Frossard, Pascal},

pages={2574--2582},

year={2016}}

本文从几何角度介绍了一种简单而有效的方法.

adversarial的目的:

\[\tag{1}
\Delta(x;\hat{k}):= \min_{r} \|r\|_2 \: \mathrm{subject} \: \mathrm{to} \: \hat{k}(x+r) \not = \hat{k}(x),
\]

其中\(\hat{k}(x)\)为对\(x\)的标签的一个估计.

二分类模型

当模型是一个二分类模型时,

\[\hat{k}(x) = \mathrm{sign}(f(x)),
\]

其中\(f:\mathbb{R}^n \rightarrow \mathbb{R}\)为分类器, 并记\(\mathcal{F}:= \{x: f(x)=0\}\)为分类边界.

\(f\)为线性

即\(f(x)=w^Tx+b\):

假设\(x_0\)在\(f(x)>0\)一侧, 则

\[r_*(x_0)= -\frac{f(x_0)}{\|w\|_2^2}w.
\]

\(f\)为一般二分类

此时, 我们\(f\)的一阶近似为

\[f(x_0+r)\approx f(x_0)+\nabla^T f(x_0) r,
\]

此时分类边界为\(\mathcal{F} =\{x:f(x_0)+\nabla^T f(x_0) (x-x_0)=0\}\),此时\(w=\nabla f(x_0),b=f(x_0),\) 故

\[\tag{4}
r_*(x_0) \approx -\frac{f(x_0)}{\|\nabla f(x_0)\|_2^2} \nabla f(x_0).
\]

所以, 每次

\[r_i = -\frac{f(x_i)}{\|\nabla f(x_i)\|_2^2} \nabla f(x_i), \\
x_{i+1} = x_i+r_i,
\]

直到\(\hat{k}(x_i) \not= \hat{k}(x_0)\)是停止, 算法如下

多分类问题

\(f:\mathbb{R}^n \rightarrow \mathbb{R}^c\), 此时

\[\tag{5}
\hat{k}(x) = \arg \max_k f_k(x).
\]

\(f\)仿射

即\(f(x) = W^Tx + b\), 设\(W\)的第\(k\)行为\(w_k\),

\[\tag{7}
P=\cap_{k=1}^c \{x: f_{\hat{k}(x_0)}(x) \ge f_k(x)\},
\]

为判定为\(\hat{k}(x_0)\)的区域, 则\(x+r\)应落在\(P^{c}\), 而

\[\Delta (x_0;f)= \mathbf{dist} (x_0, P^c).
\]

当\(f\)为仿射的时候, 实际上就是找\(x_0\)到各分类边界(与\(x_0\)有关的)最短距离,

\[\tag{8}
\hat{l}(x_0) = \arg \min _{k \not = \hat{k}(x_0)} \frac{|f_k(x_0) - f_{\hat{k}(x_0)}(x_0)|}{\|w_k-w_{\hat{k}(x_0)}\|_2},
\]

\[\tag{9}
r_*(x_0)= \frac{|f_{\hat{l}(x_0)}(x_0) - f_{\hat{k}(x_0)}(x_0)|}{\|w_{\hat{l}(x_0)}-w_{\hat{k}(x_0)}\|_2^2}(w_{\hat{l}(x_0)}-w_{\hat{k}(x_0)}),
\]

\(f\)为一般多分类

\[\tag{10}
\tilde{P}_i=\cap_{k=1}^c \{x: f_{\hat{k}(x_0)}(x_i) + \nabla^T f_{\hat{k}(x_0)}(x_i) (x-x_i)\ge f_k(x_i) + \nabla^Tf_k(x_i)(x-x_i)\},
\]

\[r_i(x_i)=\frac{|f_{\hat{l}(x_i)}(x_i) - f_{\hat{k}(x_0)}(x_i)|}{\|\nabla f_{\hat{l}(x_i)}(x_i) - \nabla f_{\hat{k}(x_0)}(x_i)\|_2^2}(\nabla f_{\hat{l}(x_i)}(x_i) - \nabla f_{\hat{k}(x_0)}(x_i)).
\]

\(l_p\)

\(p \in (1, \infty)\)的时候

考虑如下的问题

\[\begin{array}{ll}
\min & \|r\|_p^p \\
\mathrm{s.t.} & w^T(x+r)+b=0,
\end{array}
\]

利用拉格朗日乘子

\[\min_r \: \|r\|_p^p + c(w^T(x+r)+b),
\]

由KKT条件可知(这里的\(r_k\)表示第\(k\)个元素)

\[p\: |r_k|^{p-1} = c_kw_k,
\]

注: 这里有一个符号的问题, 但是可以把符号放入\(c_k\)中进而不考虑,

\[r_*= c \odot w^{q-1},
\]

其中\(q=\frac{p}{p-1}\)为共轭指数, 并\(c=[c_1,\ldots]^T\),且\(|c_i|=|c_j|,\) 记\(w^{q-1}=[|w_1|^{q-1},\ldots]^T\),又

\[w^T(x+c\odot w^{q-1})+b=0,
\]

\[|c|=\frac{|w^Tx+b|}{\|w\|_q^q} ,
\]

\[r_*=-\frac{w^Tx+b}{\|w\|_q^q} w^{q-1} \odot \mathrm{sign}(w).
\]

\(p=1\), 设\(w\)的绝对值最大的元素为\(w_{m}\), 则

\[r_*=-\frac{w^Tx+b}{w_m} \mathrm{1}_m,
\]

\(\mathrm{1}_m\)为第\(m\)个元素为1, 其余元素均为0的向量.

\(p=\infty\),

\[r_*=-\frac{|w^Tx+b|}{\|w\|_1} \mathrm{sign} (w).
\]

故:

\(p \in [1, \infty)\):

\(p=\infty\):

注: 因为, 仅仅到达边界并不足够, 往往希望更进一步, 所以在最后(?)\(x=x+ (1+\eta) r\), 文中取\(\eta=0.02\).