A synchronization aid that allows one or more threads to wait until a set of operations being performed in other threads completes.
CountDownLatch的出现是为了一个或者多个线程等待一系列操作完成后,继续往下执行。因而在日常工作中最经常使用的场景:一个大任务需要等待子任务完成后,继续往后执行其他操作。
CountDownLatch的底层实现依旧依赖于AQS的共享锁机制。
A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point.
允许一组线程都等待彼此到达一个公共屏障点。 也即允许一组线程阻塞在同一个点上,直到所有的线程都到达这个点上,再继续往下执行。
CyclicBarrier的实现底层依赖于ReentransLock。由于CyclicBarrier是可以复用,判断其参与者以及滚动到下一个代的操作,需要保证其原子性。
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
}
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {
private transient volatile Node head;
/**
* Tail of the wait queue, lazily initialized. Modified only via
* method enq to add new wait node.
*/
private transient volatile Node tail;
/**
* The synchronization state.
*/
private volatile int state;//最重要的一个变量
}
public class ConditionObject implements Condition, java.io.Serializable {
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&//尝试获取锁
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//如果获取锁失败,添加到队列中,由于ReentrantLock是独占锁所以节点必须是EXCLUSIVE类型
selfInterrupt();//添加中断标识位
}
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);//新建节点
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;//获取到尾指针
if (pred != null) {//尾指针不等于空,将当前节点替换为尾指针
node.prev = pred;
if (compareAndSetTail(pred, node)) {//采用尾插法,充分利用时间局部性和空间局部性。尾插的节点一般不容易被取消。
pred.next = node;
return node;
}
}
enq(node);//cas失败后执行入队操作,继续尝试
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;//获取尾指针
if (t == null) { //代表当前队列没有节点
if (compareAndSetHead(new Node()))//将当前节点置为头结点
tail = head;
} else {//当前队列有节点
node.prev = t;//
if (compareAndSetTail(t, node)) {//将当前节点置为尾结点
t.next = node;
return t;
}
}
}
}
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//找到当前节点的前驱节点
if (p == head && tryAcquire(arg)) {//前驱节点等于头节点尝试cas抢锁。
setHead(node);//抢锁成功将当前节点设置为头节点
p.next = null; // help GC 当头结点置空
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&//当队列中有节点在等待,判断是否应该阻塞
parkAndCheckInterrupt())//阻塞等待,检查中断标识位
interrupted = true;//将中断标识位置为true
}
} finally {
if (failed)//
cancelAcquire(node);//取消当前节点
}
}
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)//当前节点为空直接返回
return;
node.thread = null;//要取消了将当前节点的线程置为空
// Skip cancelled predecessors
Node pred = node.prev;//获取到当前节点的前驱节点
while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
node.prev = pred = pred.prev;
Node predNext = pred.next;//将当前要取消的节点断链
node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&//前驱节点不等于头结点
((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
pred.thread != null) {//前驱节点的线程补位空
Node next = node.next;//获取当前节点的next指针
if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
} else {
unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
}
node.next = node; // help GC 将引用指向自身
}
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取当前节点状态
if (ws < 0)//如果节点为负数也即不是取消节点
compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
s = null;//将s置为空
for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//如果s不等于空
LockSupport.unpark(s.thread);//唤醒当前节点s
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;//获取上一个节点的等待状态
if (ws == Node.SIGNAL)//如果状态为SIGNAL,代表后续节点有节点可以唤醒,可以安心阻塞去
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {//如果当前状态大于0,代表节点为CANCELLED状态
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;//从尾节点开始遍历,找到下一个状态不是CANCELLED的节点。将取消节点断链移除
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
//这里需要注意ws>0时,已经找到了一个不是取消状态的前驱节点。
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将找到的不是CANCELLED节点的前驱节点,将其等待状态置为SIGNAL
}
return false;
}
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
if (node == null)//当前节点为空直接返回
return;
node.thread = null;//要取消了将当前节点的线程置为空
// Skip cancelled predecessors
Node pred = node.prev;//获取到当前节点的前驱节点
while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点
node.prev = pred = pred.prev;
Node predNext = pred.next;//将当前要取消的节点断链
node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点
compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针
} else {
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&//前驱节点不等于头结点
((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL
pred.thread != null) {//前驱节点的线程补位空
Node next = node.next;//获取当前节点的next指针
if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效
compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点
} else {
unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现
}
node.next = node; // help GC 将引用指向自身
}
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取当前节点状态
if (ws < 0)//如果节点为负数也即不是取消节点
compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点
s = null;//将s置为空
for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//如果s不等于空
LockSupport.unpark(s.thread);//唤醒当前节点s
}
public final boolean release(int arg) {
if (tryRelease(arg)) {//子类实现如何释放锁
Node h = head;//获取到头结点
if (h != null && h.waitStatus != 0)//获取到头结点,如果头结点不为空,等待状态不为0,唤醒后续节点
unparkSuccessor(h);
return true;
}
return false;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;//获取节点的等待状态
if (ws < 0)//如果等待状态小于0,标识节点属于有效节点
compareAndSetWaitStatus(node, ws, 0);//将当前节点的等待状态置为0
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;//获取到下一个节点
if (s == null || s.waitStatus > 0) {//如果节点是空,或者是取消状态的节点,就找到一个非取消状态的节点,将取消状态的节点断链后由垃圾回收器进行回收
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)//节点不用空
LockSupport.unpark(s.thread);//唤醒当前等待的有效节点S
}
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)//由子类实现
doAcquireShared(arg);
}
private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);//将共享节点也即读线程入队并返回
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//找到节点的前驱节点
if (p == head) {//如果前驱节点等于头结点
int r = tryAcquireShared(arg);//尝试获取共享锁数量
if (r >= 0) {//如果锁的数量大于0,表示还有多余的共享锁。这里等于0也需要进一步判断。由于如果当执行到这里时,有另外的线程释放了共享锁,如果不进行判断,将会导致释放锁的线程没办法唤醒其他线程。所以这里会伪唤醒一个节点,唤醒的节点后续如果没有锁释放,依旧阻塞在当前parkAndCheckInterrupt方法中
setHeadAndPropagate(node, r);//将当前节点的等待状态设置为Propagate。
p.next = null; // help GC
if (interrupted)//判断是会否中断过
selfInterrupt();//设置中断标识位
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&//判断是否应该阻塞等待
parkAndCheckInterrupt方法中())//阻塞并检查中断标识
interrupted = true;//重置中断标识位
}
} finally {
if (failed)//如果失败
cancelAcquire(node);//取消节点
}
}
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);//将当前节点置为头结点
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus either before
* or after setHead) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 //可获取的共享锁也即读锁的数量,对于ReentrantReadWriteLock而言,永远都是1,所以会继续唤醒下一个读线程
|| h == null //如果旧的头结点为空
|| h.waitStatus < 0 ||//头结点的等待状态不为0
(h = head) == null || h.waitStatus < 0) {//旧头节点不为空并且等待状态小于0也即是有效节点
Node s = node.next;//获取到node的下一个节点
if (s == null || s.isShared())//如果node的下一个节点为空或者是共享节点
doReleaseShared();//唤醒下一个线程
}
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//子类实现释放锁
doReleaseShared();//唤醒后续线程
return true;//释放成功
}
return false;//释放是吧
}
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;//获取到当前头结点
if (h != null && h != tail) {//如果头结点不为空并且不等于尾结点
int ws = h.waitStatus;//获取当前节点的等待状态
if (ws == Node.SIGNAL) {//如果状态为SIGNAL
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//cas将SIGNAL状态置为0。SIGNAL标识后续有线程需要唤醒
continue; // loop to recheck cases
unparkSuccessor(h);//唤醒后续线程
}
else if (ws == 0 &&//如果当前状态为0。表示有线程将其置为0
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))//cas将0状态置为PROPAGATE。在多个共享锁同时释放时,方便继续进行读传播,唤醒后续节点
continue; // loop on failed CAS
}
if (h == head)//如果头结点没有改变,证明没有必要继续循环等待了,直接退出吧,如果头结点放生变化,可能有其他线程释放了锁。
break;
}
}
public final void await() throws InterruptedException {
if (Thread.interrupted())//线程是否发生中断,是,就抛出中断异常
throw new InterruptedException();
Node node = addConditionWaiter();//加入条件等待队列
int savedState = fullyRelease(node);//释放锁,并返回。因为当前线程需要等待
int interruptMode = 0;
while (!isOnSyncQueue(node)) {//判断是否在竞争队列中。AQS分为两个队列一个是竞争队列,等待调度执行,一个是等待队列等待在ConditionObject上。
LockSupport.park(this);//阻塞等待
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)//重新去获取锁并判断当前中断模式不是THROW_IE
interruptMode = REINTERRUPT;//将中断模式置为REINTERRUPT
if (node.nextWaiter != null) // clean up if cancelled如果当前节点的下一个节点不为空
unlinkCancelledWaiters();//清除等待队列中已经取消的节点
if (interruptMode != 0)//如果当前中断模式不等于0
reportInterruptAfterWait(interruptMode);
}
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)//如果是THROW_IE直接抛出异常
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)//如果是REINTERRUPT
selfInterrupt();//重置中断标识位
}
private Node addConditionWaiter() {
Node t = lastWaiter;//获取到最后一个节点
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {//最后一个节点不等于空,并且等待状态不等于CONDITION
unlinkCancelledWaiters();//将取消节点断链,标准的链表操作
t = lastWaiter;//获取到最后一个有效的节点
}
Node node = new Node(Thread.currentThread(), Node.CONDITION);//将当前节点封装成node
if (t == null)//如果最后一个节点为空,表示当前节点是第一个入队的节点
firstWaiter = node;
else
t.nextWaiter = node;//否则将当前node挂在链表末尾
lastWaiter = node;//设置最后节点的指针指向当前node
return node;
}
final int fullyRelease(Node node) {
boolean failed = true;
try {
int savedState = getState();//获取当前state状态
if (release(savedState)) {//释放锁尝试
failed = false;
return savedState;//返回
} else {
throw new IllegalMonitorStateException();//抛出释放锁异常
}
} finally {
if (failed)
node.waitStatus = Node.CANCELLED;//如果失败将节点置为取消状态
}
}
public final boolean release(int arg) {
if (tryRelease(arg)) {//尝试释放锁,在CyclciBarrier中由于线程需要去阻塞,所以需要将锁释放,后续重新拿锁
Node h = head;
if (h != null && h.waitStatus != 0)//从头结点开始唤醒
unparkSuccessor(h);
return true;
}
return false;
}
final boolean isOnSyncQueue(Node node) {
if (node.waitStatus == Node.CONDITION || node.prev == null)//如果当前节点是Condition或者node.pre节点为空,标识不在竞争队列中,返回faslse
return false;
if (node.next != null) // If has successor, it must be on queue 表示在竞争队列中
return true;
/*
* node.prev can be non-null, but not yet on queue because
* the CAS to place it on queue can fail. So we have to
* traverse from tail to make sure it actually made it. It
* will always be near the tail in calls to this method, and
* unless the CAS failed (which is unlikely), it will be
* there, so we hardly ever traverse much.
*/
return findNodeFromTail(node);//从竞争队列的尾结点开始找当前node,找到就返回true,否则为false
}
private boolean findNodeFromTail(Node node) {
Node t = tail;//获取到尾结点
for (;;) {
if (t == node)
return true;
if (t == null)
return false;
t = t.prev;
}
}
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?//判断当前是否中断过
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) ://如果移动到竞争队列中并入队成功,返回THROW_IE,否则返回REINTERRUPT
0;//没有中断过直接返回0
}
//走到这里表示条件队列的条件满足,可以将节点移动到竞争队列中执行
final boolean transferAfterCancelledWait(Node node) {
if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {//尝试将当前为Condition的节点置为0,并移动到竞争队列中
enq(node);
return true;
}
/*
* If we lost out to a signal(), then we can't proceed
* until it finishes its enq(). Cancelling during an
* incomplete transfer is both rare and transient, so just
* spin.
*/
while (!isOnSyncQueue(node))//如果不在竞争队列中返回false
Thread.yield();
return false;
}
signalAll方法
public final void signalAll() {
if (!isHeldExclusively())//是不是持有独占锁
throw new IllegalMonitorStateException();
Node first = firstWaiter;//获取等待队列的第一个节点
if (first != null)//如果节点不为空
doSignalAll(first);//唤醒所有线程
}
//从头指针一直遍历等待队列,将其移动到竞争队列中
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null;
do {
Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);//
first = next;
} while (first != null);
}
final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))//cas自旋将其等待状态改为0
return false;
/*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
Node p = enq(node);//将其放入竞争队列
int ws = p.waitStatus;//获取节点的等待状态
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))//如果节点是取消状态或者cas将其置为signal失败,唤醒当前线程,让他自己处理,后续在竞争队列中会自动移除取消节点
LockSupport.unpark(node.thread);
return true;
}
总结:AQS提供了统一的模板,对于如何入队出队以及线程的唤醒都由AQS提供默认的实现,只需要子类实现自己上锁和解锁的逻辑。
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
public class RWDictionary {
private final Map<String, String> m = new TreeMap<String, String>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
public String get(String key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
public String[] allKeys() {
r.lock();
try {
return (String[])m.keySet().toArray();
}
finally { r.unlock(); }
}
public String put(String key, String value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
public void clear() {
w.lock();
try { m.clear(); }
finally { w.unlock(); }
}
}
import java.util.concurrent.CountDownLatch;
public class Driver {
void main() throws InterruptedException {
int N = 10;
CountDownLatch startSignal = new CountDownLatch(1);
CountDownLatch doneSignal = new CountDownLatch(N);
for (int i = 0; i < N; ++i) // create and start threads
new Thread(new Worker(startSignal, doneSignal)).start();
// doSomethingElse(); // don't let run yet
startSignal.countDown(); // let all threads proceed
// doSomethingElse();
doneSignal.await(); // wait for all to finish
}
class Worker implements Runnable {
private final CountDownLatch startSignal;
private final CountDownLatch doneSignal;
Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
this.startSignal = startSignal;
this.doneSignal = doneSignal;
}
public void run() {
try {
startSignal.await();
doWork();
doneSignal.countDown();
} catch (InterruptedException ex) {} // return;
}
void doWork() { }
}
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);//设置共享锁的数量
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;//只要state不为0,表示还有共享锁,可以直接获取
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();//获取state变量
if (c == 0)//共享锁数量为0,表示没有共享锁需要释放
return false;
int nextc = c-1;//将共享锁数量减1
if (compareAndSetState(c, nextc))//cas设置state变量
return nextc == 0;//如果共享搜数量已经为0了,表示可以释放锁,无需等待。继续执行吧
}
}
}
private final Sync sync;
public void countDown() {
sync.releaseShared(1);
}
//调用AQS的模板方法
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {//子类自己实现,请查看上面sync类中的tryReleaseShared
doReleaseShared();//详情请查看上文AQS的doReleaseShared
return true;
}
return false;
}
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())//判断是否中断过
throw new InterruptedException();//抛出异常
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);//实现方法与doAcquireShared不可中断的方法一样,只不过增加了抛出中断异常的判断
}
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())//判断是否中断过
throw new InterruptedException();//抛出异常
return tryAcquireShared(arg) >= 0 ||//CountDownLatch自己实现释放锁的方法
doAcquireSharedNanos(arg, nanosTimeout);//doAcquireSharedNanos与doAcquireShare基本一致,不过是增加了超时以及异常抛出的处理,这里不过多赘述
}
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class CyclicBarrierDemo {
public static void main(String[] args) {
//CyclicBarrier barrier = new CyclicBarrier(10);
CyclicBarrier barrier = new CyclicBarrier(10, () -> System.out.println("线程到达"));
for(int i=0; i<30; i++) {
new Thread(()->{
try {
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
}).start();
}
}
}
public class CyclicBarrier {
private static class Generation {
boolean broken = false;
}
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
/** Condition to wait on until tripped */
private final Condition trip = lock.newCondition();
/** The number of parties */
private final int parties;
/* The command to run when tripped */
private final Runnable barrierCommand;
/** The current generation */
private Generation generation = new Generation();
/**
* Number of parties still waiting. Counts down from parties to 0
* on each generation. It is reset to parties on each new
* generation or when broken.
*/
private int count;
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
public CyclicBarrier(int parties) {
this(parties, null);
}
}
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);//不待超时,所以置为0;
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));//带超时时间
}
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;//获取到锁
lock.lock();//获取到锁
try {
final Generation g = generation;//获取到当前轮次
if (g.broken)//是否被打破过
throw new BrokenBarrierException();//抛出异常
if (Thread.interrupted()) {//如果当前线程被中过
breakBarrier();//打破当前轮次,唤醒所有线程
throw new InterruptedException();
}
int index = --count;//先将等待的线程数减1
if (index == 0) { // tripped 代表当前线程是最后一个线程,才会去唤醒等待的线程
boolean ranAction = false;
try {
final Runnable command = barrierCommand;//获取回调任务
if (command != null)//任务补位空执行
command.run();
ranAction = true;
nextGeneration();//滚动到下一个轮次,并唤醒等待线程
return 0;
} finally {
if (!ranAction)//发生异常,没有正常结束
breakBarrier();//打破当前轮次,唤醒所有线程
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)//是否设置超时时间
trip.await();//没有设置超时时间就等待
else if (nanos > 0L)//如果超时时间大于0
nanos = trip.awaitNanos(nanos);//等待固定的超时时间,此方法与trip.await()类似,只是加了超时时间的处理而已
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {//g还是当前轮次,并且没有被打破
breakBarrier();//由于发生异常,打破当前轮次,唤醒所有线程。
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();//中断
}
}
if (g.broken)//轮次已经被打破,抛出中断异常
throw new BrokenBarrierException();
if (g != generation)//当前轮次不等于现在的轮次。g获取时是临时变量,中间可能会发生变化
return index;
if (timed && nanos <= 0L) {//设置了超时,并且已经超时
breakBarrier();//打破当前轮次,唤醒所有线程
throw new TimeoutException();
}
}
} finally {
lock.unlock();//解锁
}
}
private void breakBarrier() {
generation.broken = true;//broken设置为true
count = parties;//count设置为参与者的数量
trip.signalAll();//唤醒所有等待的线程
}
private void nextGeneration() {
// signal completion of last generation
trip.signalAll();//唤醒所有线程,AQS的方法
// set up next generation
count = parties;//count设置为参与者的数量
generation = new Generation();//赋值一个新的Generation,代表不同的轮次
}
本文章只是JUC 中AQS的一部分,后续的文章会对基于AQS锁实现的子类进行拓展讲解,以上文章内容基于个人以及结合别人文章的理解,如果有问题或者不当之处欢迎大家留言交流。由于为了保证观看流畅性,其中一部分源码有重复的地方。请见谅
手机扫一扫
移动阅读更方便
你可能感兴趣的文章