\(Mirko\) 和 \(Slavko\) 喜欢一起去远足。
\(Mirko\) 偏好攀登山峰,而 \(Slavko\) 偏爱山谷。因此每次他们登上一座山峰后,\(Slavko\) 会决定下次去哪个山谷玩(如果存在索道),同理每次游玩一个山谷后,\(Mirko\) 会决定下次去攀登哪座山峰(如果存在索道)。于是,不会出现连续两次游玩山峰或者连续两次游玩山谷的情况。为了享受更多乐趣,他们不会去已经去过的景点。
如果他们逛完一个景点后,发现接下来无法乘坐索道前往任何可行的景点,那么这次旅行就结束了。这时,如果最终景点是山峰,则 \(Mirko\) 获胜,否则 \(Slavko\) 获胜。
假设两个人都足够聪明,请你计算:从任意一座山峰开始旅行,最终谁会获胜?
第一行为两个正整数 \(N\)、\(M\),表示有 \(N\) 座山峰、\(N\) 个山谷和 \(M\) 条索道。
接下来 \(M\) 行,每行两个正整数 \(vi\) 、\(di\) ,表示在第 \(vi\) 座山峰和第 \(di\) 个山谷之间存在一条索道。任意一对山峰和山谷之间至多有一条索道。
输出 \(N\) 行,每行一个字符串。第 \(i\) 行的字符串表示,假如旅行出发点是第 \(i\) 座山峰,那么最终谁会获胜。注意区分大小写。
4 5
2 2
1 2
1 1
1 3
4 2
Slavko
Mirko
Mirko
Mirko
【数据规模与约定】
对于 \(30%\) 的数据,\(1 \leq N \leq 10\) 。
对于额外 \(20%\) 的数据,任意两个景点之间至多存在一条简单路径,构成一个森林。
对于 \(100%\) 的数据,\(1 \leq N, M \leq 5000, M \leq N ^2\)。
来源:\(NOI2019\) 北京队集训
考试的时候当然没想出来,就写了个50分的暴力(树形 \(dp\) +状压 \(dp\)),结果因为数组开小了爆零 QwQ
正解 %%% \(hzk\) 大神
比较套路,考虑做个二分图的最大匹配。
从某个山峰处出发,若当前没有匹配,且找不到增广路,则 \(Mirko\) 赢。
为什么呢?因为不管走到哪个山谷点,都可以顺着当前的匹配边走到山峰,直到到某个山峰没有出路。
那么,得出结论:
从某个山峰出发,若这个山峰在某个最大匹配中未被匹配,则 \(Mirko\) 赢,否则 \(Slavko\) 赢。
怎么判断呢?
先匈牙利算法跑出一个最大匹配,然后从每个非匹配的山峰点往前找增广路,找的过程中经过的山峰点都可能在某个最大匹配中未被匹配(可以这样理解,当前未匹配的点一次顺着当前找的过程中已经过的边匹配,这个新点就变成了此时的未匹配点)
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
}
const int N = 5005;
struct node{
int v;
node *nxt;
}pool[N],*h[N*2];
int cnt;
void addedge(int u,int v){
node *p=&pool[++cnt];
p->v=v;p->nxt=h[u];h[u]=p;
}
int n,m;
int con[N],vis[N];
bool find(int u){
int v;
for(node *p=h[u];p;p=p->nxt){
if(vis[v=p->v-n]) continue;
vis[v]=1;
if(!con[v] || find(con[v])){
con[v]=u;
return true;
}
}
return false;
}
int no[N];
void getno(int u){
int v;
no[u]=1;
for(node *p=h[u];p;p=p->nxt){
if(vis[v=p->v-n]) continue;
vis[v]=1;
getno(con[v]);
}
}
int main()
{
int u,v;
n=read(); m=read();
for(int i=0;i<m;i++) {
u=read(); v=read()+n;
addedge(u,v);
}
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(find(i)) no[i]=0;
else{
no[i]=1;
memset(vis,0,sizeof(vis));
getno(i);
}
}
for(int i=1;i<=n;i++)
if(no[i]) printf("Mirko\n");
else printf("Slavko\n");
return 0;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章