**题意:
一开始的时候有一个坐标系(正常的),然后有n个操作,每个操作是 x y d,意思是当前坐标系围绕x,y点逆时针旋转d度,最后让你输出三个数x y d,把这n个操作的最后结果,用一步等效过来,就是找到一个点,逆时针旋转一个度数,等于当前的这个状态。
思路:
**
我们可以用一个向量来代表当前坐标系,每次操作把当前向量拆成两个点单独操作,假如当前向量a,b,绕点c旋转d度,那么我们可以等效向量c,a逆时针旋转d,然后向量c,b逆时针旋转d,这样就的到了两个新的向量,此时我们要根据这两个新的向量求出当前这两个点的新位置,然后再用当前的新位置和下一组操作,最后得到了最终的一个向量,现在我们只要求出初始向量和最终向量的转换关系就行了,这个地方首先我们求转换点,求法是两个向量的x,x'连线,y.y'连线,两条线段中垂线的交点,求出交点之后再用余弦定理求出夹角,然后在用向量的关系来判断要不要用2PI-当前度数,具体看代码。
#include
#include
#include
#define maxn 60
#define eps 1e-7
#define PP (3.141592653589793238)
using namespace std**;
int** dcmp(double x)
{
if(fabs(x)<eps) return 0;
else return x<0?-1:1;
}
double toRad(double deg)
{
return deg/180.0*acos(-1.0);
}
struct Point {
double x,y;
Point(){}
Point(double x,double y):x(x),y(y) {}
void input()
{
scanf("%lf %lf",&x,&y);
}
};
typedef Point Vector;
Vector operator+( Vector A, Vector B )
{
return Vector( A.x + B.x, A.y + B.y );
}
Vector operator-(Vector A,Vector B)
{
return Vector( A.x - B.x, A.y - B.y );
}
Vector operator*( Vector A, double p )
{
return Vector( A.x * p, A.y * p );
}
Vector operator/( Vector A, double p )
{
return Vector( A.x / p, A.y / p );
}
bool operator<(const Point& A, const Point& B )
{
return dcmp( A.x - B.x ) < 0 || ( dcmp( A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 );
}
bool operator==( const Point& a, const Point& b )
{
return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0;
}
struct Line {
Point s,e;
Vector v;
Line() {}
Line(Point s,Point v,int type):
s(s),v(v){}
Line(Point s,Point e):s(s),e(e)
{v=e-s**;}
};
double** Dot(Vector A,Vector B)
{
return A.x*B.x+A.y*B.y;
}
double Length(Vector A)
{
return sqrt(Dot(A,A));
}
double Angle(Vector A,Vector B)
{
return acos(Dot(A,B)/Length(A)/Length(B));
}
double Cross(Vector A,Vector B)
{
return A.x*B.y-A.y*B.x;
}
double Area2(Point A,Point B,Point C )
{
return Cross(B-A,C-A);
}
double Dist(Point A,Point B)
{
return Length(A-B);
}
Vector Rotate(Vector A, double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A)
{
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
Point GetLineIntersection(Line l1,Line l2)
{
Point P=l1.s;
Vector v=l1.v;
Point Q=l2.s;
Vector w=l2.v;
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
}
double DistanceToLine(Point P,Line L)
{
Point A,B;
A=L.s,B=L.e;
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P, Line L)
{
Point A,B;
A=L.s,B=L.e;
if(A==B) return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if (dcmp(Dot(v1,v2))<0) return Length(v2);
else if (dcmp(Dot(v1,v3))>0) return Length(v3);
else return fabs(Cross(v1,v2)) / Length(v1);
}
Point GetLineProjection(Point P,Line L)
{
Point A,B;
A=L.s,B=L.e;
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v**));
}
double** abss(double x)
{
return x < 0 ? -x : x**;
}
bool** OnSegment(Point p,Line l)
{
Point a1=l.s;
Point a2=l.e;
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dist(p,a1)+Dist(p,a2)-Dist(a1,a2))==0;
}
bool Paralled(Line l1,Line l2)
{
return dcmp(Cross(l1.e-l1.s,l2.e-l2.s))==0;
}
bool SegmentProperIntersection(Line l1,Line l2)
{
if(Paralled(l1,l2))
{
return false;
}
Point t=GetLineIntersection(l1,l2);
if(OnSegment(t,l1))
{
return true;
}
return false**;
}
int main ()
{
double** x ,y ,p;
int T ,n ,i;
scanf("%d" ,&T);
while(T--)
{
scanf("%d" ,&n);
double nowx1 = 0 ,nowy1 = 0;
double nowx2 = 0 ,nowy2 = 101.0;
double sss = 0;;
Vector A ,B;
for(i = 1 ;i <= n ;i ++)
{
scanf("%lf %lf %lf" ,&x ,&y ,&p);
if(p == 0.0 || abss(p - PP * 2) <= 0.00001) continue;
sss += p;
A.x = nowx1 - x ,A.y = nowy1 - y;
B = Rotate(A ,p);
nowx1 = x + B.x ,nowy1 = y + B.y;
A.x = nowx2 - x ,A.y = nowy2 - y;
B = Rotate(A ,p);
nowx2 = x + B.x ,nowy2 = y + B.y;
}
if(nowx1 == 0.0 && nowy1 == 0.0)
{
double x4 = nowx2 ,y4 = nowy2;
double x3 = 0 ,y3 = 0;
double x1 = 0 ,y1 = 101.0;
double aaa;
double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
aaa = acos(tmp);
double q1 = 0 ,q2 = 0;
if(nowx2 > 0.0) aaa = PP * 2 - aaa;
if(abss(aaa - PP * 2) <= 0.00001)aaa = 0;
printf("%lf %lf %lf\n" ,q1 ,q2 ,aaa);
}
else if(nowx2 == 0.0 && nowy2 == 101.0)
{
double x4 = nowx1 ,y4 = nowy1;
double x3 = 0 ,y3 = 101.0;
double x1 = 0 ,y1 = 0;
double aaa;
double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
aaa = acos(tmp);
double q1 = 0 ,q2 = 101.0;
if(nowx1 < 0) aaa = PP * 2 - aaa;
if(abss(aaa - PP * 2) <= 0.00001)aaa = 0;
printf("%lf %lf %lf\n" ,q1 ,q2 ,aaa);
}
else
{
Point AA1;
AA1.x = AA1.y = 0;
Point BB1;
BB1.x = nowx1 ,BB1.y = nowy1;
Line now1 = Line((AA1 + BB1)/2 ,Normal(AA1 - BB1),1);
Point AA2;
AA2.x = 0 ,AA2.y = 101.0;
Point BB2;
BB2.x = nowx2 ,BB2.y = nowy2;
Line now2 = Line((AA2 + BB2)/2 ,Normal(AA2 - BB2),1);
Point now = GetLineIntersection(now1 ,now2);
double x4 = nowx1 ,y4 = nowy1;
double x3 = now.x ,y3 = now.y;
double x1 = 0 ,y1 = 0;
double aaa;
double tmp = (x4 - x3) * (x1 - x3) + (y4 - y3) * (y1 - y3);
tmp = tmp / (pow(x4 - x3 ,2.0) + pow(y4 - y3 ,2.0));
double x2 ,y2;
x1 = 0 ,y1 = 101;
x2 = nowx2 - nowx1 ,y2 = nowy2 - nowy1;
aaa = acos(tmp);
if(x1*y2-x2*y1<0) aaa = PP * 2 - aaa;
printf("%lf %lf %lf\n" ,now.x ,now.y ,aaa);
}
}
return 0;
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章