【学习笔记】浅析平衡树套线段树 & 带插入区间K小值
阅读原文时间:2023年07月08日阅读:2

一般来说,在嵌套数据结构中,线段树多被作为外层结构使用。

但线段树毕竟是 静态 的结构,导致了一些不便。

下面是一个难以维护的例子:

来源:Luogu P4278 & BZOJ 3065

给定一个初始长为 \(n\) 的正整数序列,执行 \(m\) 次操作:

  • Q x y k:查询区间 \([x, y]\) 中第 \(k\) 小的数的大小;
  • M x val:将位置 \(x\) 的数字修改为 \(val\);
  • I x val:在位置 \(x\) 前插入数字 \(val\)。

插入次数、原序列长度 \(\le 3.5\times 10^4\),查询次数、数值大小 \(\le 7\times 10^4\)。强制在线。

由于数列出现的结构上的变动,线段树作为静态数据结构已经难以维护。

于是我们考虑用动态结构的 平衡树 作为外层结构,即 平衡树套线段树

但是毕竟为外层结构,我们选择的平衡树也不能太跳,这里暂且使用 替罪羊树。WBLT 之类的应该也行,不过这里暂且介绍一种 不会。

替罪羊树不同于 Splay,Treap——它不用旋转。为了维持平衡,我们会在不平衡的结点 排扁重构。是否足够不平衡是根据子树大小判断的。替罪羊树相对于旋转平衡树结构更稳定,更适合作为外层结构。

在这里,替罪羊树上的每一个结点都包含着一颗 动态开点权值线段树,表示以当前结点为根的子树中的数值构成的集合。

建树

建树的整体框架与普通平衡树并无大异,只不过加上线段树部分即可。

大致来说就是当前线段树需要包含左右儿子以及自己的信息。

相对于一个个插入,使用 线段树合并 方法显然优秀一些。

我们知道线段树合并的总复杂度是一只 \(\log\) 的,所以总复杂度不会超过 \(O(n\log^2 n)\)。

操作

插入操作,我们只要进行常规的平衡树插入即可。平衡树上二分找到第 \(x\) 个位置前加入结点,同时在寻找的路径上的每一个平衡树结点上进行线段树的插入。这样的复杂度是 \(O(\log^2 n)\),因为平衡树深度为 \(O(\log n)\),所以一共更新了 \(O(\log n) \times O(\log n)\) 个线段树结点。在插入前需要判断重构。

单点修改也是同理,找到这个结点然后把这条路径进行线段树单点修改即可。复杂度仍然 \(O(\log^2 n)\)。

对于查询,我们回忆一下 Dynamic Rankings 的线段树(树状数组)套线段树做法,类似的我们也把这些平衡树子树“拎”出来,把零散的结点“抠”出来,然后一起二分即可。复杂度 \(O(\log^2 n)\)。

时空复杂度均为 \(O(n\log^2 n)\)。

但是常数其实很大。用这个做法过掉上题的 Luogu 数据是非常困难的。

降低空间常数

如果一颗线段树的子树不代表任何元素,即 \(siz = 1\)。那么对于当前来说这个子树不要也罢,于是可以添加一个 垃圾回收机制

由于线段树不是实现重点,这里只展出替罪羊树的部分。

segt 前缀的是线段树;spat 前缀的是替罪羊树。

建树

int spatBuild(int l, int r) {
    if (l > r) return 0;
    int mid = (l + r) >> 1;
    int x = createSpatNode(0, 0, a[mid], r - l + 1);
    spat[x].lc = spatBuild(l, mid - 1);
    spat[x].rc = spatBuild(mid + 1, r);
    spat[x].seg_rt = segtMerge(
        spat[spat[x].lc].seg_rt,
        spat[spat[x].rc].seg_rt,
        0, U);
    segtInsert(spat[x].seg_rt, 0, U, a[mid], 1);
    return x;
}

查询

int qry[N], qcnt;
int val[N], vcnt;
void spatScanOut(int x, int ql, int qr, int l, int r) {
    if (ql > qr || l > r) return;
    if (ql <= l && r <= qr) return qry[++qcnt] = x, void();
    if (l > qr || r < ql) return;

    int mid = spat[spat[x].lc].siz + l;
    if (ql <= mid && mid <= qr) val[++vcnt] = spat[x].val;

    spatScanOut(spat[x].lc, ql, qr, l, mid - 1);
    spatScanOut(spat[x].rc, ql, qr, mid + 1, r);
}
int Query(int ql, int qr, int k) {
    qcnt = vcnt = 0;
    spatScanOut(spatRoot, ql, qr, 1, spat[spatRoot].siz);

    int l = 0, r = U;
    for (int i = 1; i <= qcnt; i++)
        qry[i] = spat[qry[i]].seg_rt;

    while (l < r) {
        int mid = (l + r) >> 1;
        int sum = 0;

        for (int i = 1; i <= qcnt; i++)
            sum += segt[segt[qry[i]].lc].siz;
        for (int i = 1; i <= vcnt; i++)
            sum += (val[i] <= mid);

        if (k <= sum) {
            r = mid;
            for (int i = 1; i <= qcnt; i++)
                qry[i] = segt[qry[i]].lc;
        } else {
            l = mid + 1, k -= sum;
            for (int i = 1; i <= qcnt; i++)
                qry[i] = segt[qry[i]].rc;
            for (int i = 1; i <= vcnt; i++)
                if (val[i] <= mid) val[i] = U + 5;
        }
    }
    return l;
}

单点修改

int spatAt(int x, int k) {
    while (x) {
        if (spat[spat[x].lc].siz + 1 == k) return spat[x].val;
        if (k <= spat[spat[x].lc].siz) x = spat[x].lc;
        else k -= spat[spat[x].lc].siz + 1, x = spat[x].rc;
    }
    throw;
}
void spatEdit(int x, int k, int lst, int cur) {
    segtInsert(spat[x].seg_rt, 0, U, lst, -1);
    segtInsert(spat[x].seg_rt, 0, U, cur, 1);
    if (spat[spat[x].lc].siz + 1 == k)
        return spat[x].val = cur, void();
    if (k <= spat[spat[x].lc].siz) spatEdit(spat[x].lc, k, lst, cur);
    else spatEdit(spat[x].rc, k - spat[spat[x].lc].siz - 1, lst, cur);
}
void Replace(int pos, int val) {
    int lst = spatAt(spatRoot, pos);
    if (lst != val) spatEdit(spatRoot, pos, lst, val);
}

插入

void spatFlatten(int& x) {
    if (!x) return;
    spatFlatten(spat[x].lc);
    a[++n] = spat[x].val;
    spatFlatten(spat[x].rc);
    destroySegtTree(spat[x].seg_rt);
    p_rec[++p_top] = x, x = 0;
}
void spatRebuild(int& x) {
    n = 0, spatFlatten(x);
    x = spatBuild(1, n);
}
void spatInsert(int& x, int k, int val) {
    if (!x) {
        x = createSpatNode(0, 0, val, 1);
        segtInsert(spat[x].seg_rt, 0, U, val, 1);
        return;
    }
    ++spat[x].siz, segtInsert(spat[x].seg_rt, 0, U, val, 1);
    if (k <= spat[spat[x].lc].siz) spatInsert(spat[x].lc, k, val);
    else spatInsert(spat[x].rc, k - spat[spat[x].lc].siz - 1, val);
    if (checkBad(x)) spatRebuild(x);
}
void Insert(int pos, int val) {
    spatInsert(spatRoot, pos - 1, val);
}

完整实现

Record:https://darkbzoj.tk/submission/83902

14695ms|117088kb|6.5kb

后记

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器

你可能感兴趣的文章