数据源
A
B
C
D
Z
要实现的输出
Z
D
B
C
A
看字符顺序,其实什么也没有,只是按照后面的数字进行一次倒序排序,实现思路,1利用hadoop自带的排序功能,2.KV互换
实现代码
public class SVJob {
public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
conf.set("mapred.job.tracker", "192.168.9.181:9001");
String[] ars = new String[] {
"hdfs://192.168.9.181:9000/user/hadoop/input/examples/SortByValue/",
"hdfs://192.168.9.181:9000/user/hadoop/output/examples/SortByValue" };
String[] otherArgs = new GenericOptionsParser(conf, ars)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("SortByValue:
System.exit(2);
}
Job job = new Job(conf, "SortByValue");
job.setJarByClass(SVJob.class);
job.setMapperClass(SVMapper.class);
job.setReducerClass(SVReducer.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setSortComparatorClass(IntWritableDecreasingComparator.class);
FileInputFormat.addInputPath(job, new Path(otherArgs\[0\]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs\[1\]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
public class SVMapper extends Mapper
public class SVReducer extends Reducer
protected void reduce(IntWritable key, Iterable
for(Text value : values){
context.write(value, key);
}
}
}
因为我们要实现倒序排序要有自定义的排序方法
public class IntWritableDecreasingComparator extends Comparator {
@SuppressWarnings("rawtypes")
public int compare( WritableComparable a,WritableComparable b){
return -super.compare(a, b);
}
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
return -super.compare(b1, s1, l1, b2, s2, l2);
}
}
这样就完成了,可以自定义排序了
手机扫一扫
移动阅读更方便
你可能感兴趣的文章