复习!复习!
原文链接:http://blog.csdn.net/goodshot/article/details/8611178
1.代码:
Matlab相关系数的意义:
Eigen::MatrixXf correlation_matrix = corrcoef( LocM );
对行向量求相关系数 , 与列数无关,返回 cols()*cols() 矩阵…
翻译成Eigen:
还是自己写个函数吧
//1.求协方差
Eigen::MatrixXf CIcSearchM::cov(Eigen::MatrixXf &d1, Eigen::MatrixXf &d2)
{
Eigen::MatrixXf CovM(1,1);
assert(1 ==d1.cols() && 1 ==d2.cols() &&d1.cols()==d2.cols() );
//求协方差
float Ex =0;float Ey=0;
for (int i=0;i< d1.rows();++i){
Ex +=d1(i);
Ey +=d2(i);
}
Ex /=d1.rows();
Ey /=d2.rows();
for (int i=0;i< d1.rows();++i){
CovM(0) += (d1(i)-Ex)*(d2(i)-Ey);
}
CovM(0) /= d1.rows() -1;
return CovM;
}
//2.写入方差矩阵
//求矩阵的相关系数!
//返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵…
Eigen::MatrixXf CIcSearchM::corrcoef(Eigen::MatrixXf &M)
{
// C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix
int Row= M.rows();
int Col= M.cols();
int Order= Col;//int Order= (std::max)(Row,Col);
Eigen::MatrixXf Coef(Order,Order);
for (int i=0;i<Order;++i){
for (int j=0;j<Order;++j){
Coef(i,j)= cov((Eigen::MatrixXf)M.col(i),(Eigen::MatrixXf)M.col(j))(0);
}
}
return Coef;
}
2.优化的代码
使用Eigen计算1000维的方阵大概需要200ms的时间,相对于matlab默认开启GPU加速,时间上消耗的太多了。
参考:比较OpenBLAS、Matlab、MKL、Eigen的基础计算性能
优化的代码:
//求矩阵的相关系数!一个原始公式的简化算法/优化算法
//返回矩阵A的列向量的相关系数矩阵//对行向量求相关系数 , 与行数无关,返回 cols()*cols() 矩阵…
Eigen::MatrixXf CIcSearchM::CorrcoefOpm(Eigen::MatrixXf &MI)
{
Eigen::MatrixXf M =MI;
// C(i,j)/SQRT(C(i,i)*C(j,j)).//C is the covariation Matrix
//公式:
//temp = mysample - repmat(mean(mysample), 10, 1);
//result = temp' * temp ./ (size(mysample, 1) - 1)
int Row= M.rows();
int Col= M.cols();
int Order= Col;//int Order= (std::max)(Row,Col);
SYSTEMTIME sysP;
GetLocalTime( &sysP );
int MileTsp = sysP.wSecond;
int MileTP = sysP.wMilliseconds;
Eigen::MatrixXf CovM(Order,Order);//(1,Col);
Eigen::MatrixXf E\_M(1,Col);
//减去每一个维度的均值;确定一列为一个维度。
//std::cout<< "Mat Src :"<<std::endl;m\_Testor.print\_EigenMat( M);
for (int i =0;i< Col;++i)
{
//求均值
E\_M(i) =M.col(i).sum()/M.rows();
//std::cout<< "E\_M(i)" << E\_M(i)<< std::endl;
M.col(i) = M.col(i)- E\_M(i);
//
}
//SYSTEMTIME sysP2;
//GetLocalTime( &sysP );
//int MileTsp2 = sysP.wSecond;
//int MileTP2 = sysP.wMilliseconds;
//int DetaTp = MileTP2 - MileTP;
//int DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//std::cout<< "Mat E\_M :"<<std::endl;m\_Testor.print\_EigenMat( M);
CovM = M.transpose();
//GetLocalTime( &sysP );
//MileTsp2 = sysP.wSecond;
//MileTP2 = sysP.wMilliseconds;
//DetaTp = MileTP2 - MileTP;
//DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//std::cout<< "Mat CovM :"<<std::endl;m\_Testor.print\_EigenMat( CovM);
CovM = CovM \* M ;
//GetLocalTime( &sysP );
//MileTsp2 = sysP.wSecond;
//MileTP2 = sysP.wMilliseconds;
//DetaTp = MileTP2 - MileTP;
//DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//实现 ./ 函数 数值计算没有区别
CovM = CovM /(Order-1)/(Order-1);
//GetLocalTime( &sysP );
//MileTsp2 = sysP.wSecond;
//MileTP2 = sysP.wMilliseconds;
//DetaTp = MileTP2 - MileTP;
//DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//std::cout<< "Mat CovM :"<<std::endl;m\_Testor.print\_EigenMat( CovM);
//GetLocalTime( &sysP );
//MileTsp2 = sysP.wSecond;
//MileTP2 = sysP.wMilliseconds;
//DetaTp = MileTP2 - MileTP;
//DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//遍历一次
for (int i=0;i< Order;++i){
for (int j=0;j<Order;++j){
CovM(i,j) = sqrt(CovM(i,i)\*CovM(j,j) );
}
}
//GetLocalTime( &sysP );
//MileTsp2 = sysP.wSecond;
//MileTP2 = sysP.wMilliseconds;
//DetaTp = MileTP2 - MileTP;
//DetaTsp = MileTsp2 -MileTsp;
//std::cout<< "The Process time is :"<< DetaTsp<<"S"<< std::endl;
//std::cout<< "The Process time is :"<< DetaTp<<"mS"<< std::endl;
//std::cout<< "Mat CovM :"<<std::endl;m\_Testor.print\_EigenMat( CovM);
return CovM;
}
稀疏矩阵可以加速到3ms,我去!终于可以实用了…..
手机扫一扫
移动阅读更方便
你可能感兴趣的文章