1.更快(本课程重点!)
2.更省(存储空间、运行空间)
3.更美(UI 交互)
4.更正确(本课程重点!各种条件下)
5.更可靠
6.可移植
7.更强大(功能)
8.更方便(使用)
9.更范(格式符合编程规范、接口规范 )
10.更易懂(能读明白、有注释、模块化)
面向存储器的优化:cache无处不在
减少过程调用
消除不必要的内存引用
循环展开
提高并行性
COMVxx指令
使用编译器的优化模式,-O:0 1 2 3
多线程优化
嵌入式汇编
减少除法等一些计算量大的运算的使用
GPU编程
多进程优化
一个图像处理程序实现图像的平滑,其图像分辨率为1920*1080,每一点颜色值为64b,用long img [1920] [1080]存储屏幕上的所有点颜色值,颜色值可从0依行列递增,或真实图像。
平滑算法为:任一点的颜色值为其上下左右4个点颜色的平均值,即:
img[i] [j] = (img [i-1] [j] +img[i+1] [j]+img[i] [j-1] +img[i] [j+1] ) / 4。
请面向你的CPU与cache,利用本课程学过的优化技术,编写程序,并说明你所采用的优化方法。
关于本次的平滑算法: 不考虑四周,不考虑前后变量改变带来的正确性问题,只作为优化的任务。
但如果考虑其正确性,用一个 dst [1920]] [1080] 存储平滑后的图像值也是可以的。
使用C语言 time.h 库, 获取运行前后时间钟,算出运行时间。
void Test(void (*function)())
{
clock_t t1 = clock();
int t = 100;
while(t--)
{
function();
}
clock_t t2 = clock();
printf("COST %ldms\n",(t2 - t1) * 1000 / CLOCKS_PER_SEC);
}
先要写为可优化的版本,所以先枚举列再枚举行。
int i, j;
for(j = 1; j < WIDTH - 1; j ++ )
{
for(i = 1; i < HEIGHT - 1; i ++ )
{
img[i][j] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
}
}
改为先枚举行,再枚举列。
int i, j;
for(i = 1; i < HEIGHT - 1; i ++ )
{
for(j = 1; j < WIDTH - 1; j ++ )
{
img[i][j] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
}
}
减少迭代次数。但是实验结果是性能并没有优化(相比较上一个)。
原因应该是:前后变量有运算依赖关系。
int block = 4;
int i, j;
for(i = 1; i < HEIGHT - 1; i ++ )
{
for(j = 1; j < WIDTH - 4; j += block)
{
img[i][j] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
img[i][j + 1] = (img[i - 1][j + 1] + img[i + 1][j + 1] + img[i][j + 1 + 1] + img[i][j - 1 + 1]) / 4;
img[i][j + 2] = (img[i - 1][j + 2] + img[i + 1][j + 2] + img[i][j + 1 + 2] + img[i][j - 1 + 2]) / 4;
img[i][j + 3] = (img[i - 1][j + 3] + img[i + 1][j + 3] + img[i][j + 1 + 3] + img[i][j - 1 + 3]) / 4;
}
for(;j < WIDTH - 1; j ++ )
{
img[i][j] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
}
}
既然前后变量有运算依赖关系,那我们就不让有依赖关系,并保持循环展开的形式。
但实验结果是:没有优化多少,这个原因仍没搞懂,或许需要查看汇编代码。
int i, j;
//为什么是14:14|1918
for(i = 1; i < HEIGHT - 1; i ++ )
{
for(j = 1; j < WIDTH - 1; j += 14)
{
img[i][j + 0] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
img[i][j + 2] = (img[i - 1][j + 2] + img[i + 1][j + 2] + img[i][j + 1 + 2] + img[i][j - 1 + 2]) / 4;
img[i][j + 4] = (img[i - 1][j + 4] + img[i + 1][j + 4] + img[i][j + 1 + 4] + img[i][j - 1 + 4]) / 4;
img[i][j + 6] = (img[i - 1][j + 6] + img[i + 1][j + 6] + img[i][j + 1 + 6] + img[i][j - 1 + 6]) / 4;
img[i][j + 8] = (img[i - 1][j + 8] + img[i + 1][j + 8] + img[i][j + 1 + 8] + img[i][j - 1 + 8]) / 4;
img[i][j + 10] = (img[i - 1][j + 10] + img[i + 1][j + 10] + img[i][j + 1 + 10] + img[i][j - 1 + 10]) / 4;
img[i][j + 12] = (img[i - 1][j + 12] + img[i + 1][j + 12] + img[i][j + 1 + 12] + img[i][j - 1 + 12]) / 4;
}
for(j = 2; j < WIDTH - 1; j += 14)
{
img[i][j + 0] = (img[i - 1][j] + img[i + 1][j] + img[i][j + 1] + img[i][j - 1]) / 4;
img[i][j + 2] = (img[i - 1][j + 2] + img[i + 1][j + 2] + img[i][j + 1 + 2] + img[i][j - 1 + 2]) / 4;
img[i][j + 4] = (img[i - 1][j + 4] + img[i + 1][j + 4] + img[i][j + 1 + 4] + img[i][j - 1 + 4]) / 4;
img[i][j + 6] = (img[i - 1][j + 6] + img[i + 1][j + 6] + img[i][j + 1 + 6] + img[i][j - 1 + 6]) / 4;
img[i][j + 8] = (img[i - 1][j + 8] + img[i + 1][j + 8] + img[i][j + 1 + 8] + img[i][j - 1 + 8]) / 4;
img[i][j + 10] = (img[i - 1][j + 10] + img[i + 1][j + 10] + img[i][j + 1 + 10] + img[i][j - 1 + 10]) / 4;
img[i][j + 12] = (img[i - 1][j + 12] + img[i + 1][j + 12] + img[i][j + 1 + 12] + img[i][j - 1 + 12]) / 4;
}
}
分块,使每次运算的数据恰好填满cache line,从而减少cache miss。
register int i, j;
register int i_, j_;
register int i__, j__;
int block = 8;// 8 * 8 = 64 = cache line
for(i = 1; i < HEIGHT - 1; i += block)
{
for(j = 1; j < WIDTH - 1; j += block)
{
i__ = minn(HEIGHT - 1, i + block);
j__ = minn(WIDTH - 1, j + block);
for(i_ = i; i_ < i__; i_ ++)
{
for(j_ = j; j_ < j__; j_ ++)
{
img[i_][j_] = (img[i_][j_ - 1] + img[i_][j_ + 1] + img[i_ - 1][j_] + img[i_ + 1][j_]) / 4;
}
}
}
}
利用CPU多核的特点,将任务分为多个子任务。
这里使用C语言pthread库。优化效果显著!
点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <time.h>
#define PTHREAD_NUM 6//线程总数
#define RECNUM 100
typedef struct
{
int l;
int r;
}PTH_ARGV;//线程参数结构体
typedef struct
{
int a;
}PTH_RETURN;//线程返回值结构体
#define HEIGHT 1080
#define WIDTH 1920
long img[HEIGHT][WIDTH];
int maxn(int x, int y)
{
if(x >= y)
{
return x;
}else
{
return y;
}
}
int minn(int x, int y)
{
if(x >= y)
{
return y;
}else
{
return x;
}
}
void *func(void *argv)//线程函数体
{
PTH_ARGV *pth_argv;
PTH_RETURN *pth_return = malloc(sizeof(PTH_RETURN));//为返回值申请空间
pth_argv = (PTH_ARGV*)argv;//将参数强转为参数结构体
{//线程要做的事情
register int i, j;
register int i_, j_;
register int i__, j__;
int block = 8;// 8 * 8 = 64 = cache line
for(i = pth_argv->l; i < pth_argv->r; i += block)
{
for(j = 1; j < WIDTH - 1; j += block)
{
i__ = minn(pth_argv->r, i + block);
j__ = minn(WIDTH - 1, j + block);
for(i_ = i; i_ < i__; i_ ++)
{
for(j_ = j; j_ < j__; j_ ++)
{
img[i_][j_] = (img[i_][j_ - 1] + img[i_][j_ + 1] + img[i_ - 1][j_] + img[i_ + 1][j_]) / 4;
}
}
}
}
}
free(argv);//释放线程参数空间
/*
void pthread_exit(void *retval);
描述:线程终止;类似于exit,exit是进程终止,两者差距在于结束的对象不同。
参数:
retval -- 要带回的值,可以为NULL,如果为NULL,则不需要线程返回值结构体,母线程也不会收到子线程的返回值
*/
pthread_exit(pth_return);//线程结束,返回母线程需要的返回值,
}
int main()
{
pthread_t pd[PTHREAD_NUM];//pid
PTH_ARGV *pth_argv;//线程参数
//PTH_RETURN *pth_return;//线程返回值
int cnt = RECNUM;
clock_t t1, t2;
t1 = clock();
while(cnt --)
{
int i;
for(i = 0;i < PTHREAD_NUM;i ++)
{
//为线程参数申请空间(注:为什么要申请空间?因为不申请空间,所有线程公用同意参数空间,很可能发生线程间的抢占效果),此函数需要由子线程释放掉
pth_argv = malloc(sizeof(PTH_ARGV));
{//对线程参数结构体进行初始化
pth_argv->l = maxn(1, i * HEIGHT / PTHREAD_NUM);
pth_argv->r = minn(HEIGHT - 1, (i + 1) * HEIGHT / PTHREAD_NUM);
}
/*
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
描述:创建一个线程。
返回值:成功返回0,失败返回一个错误编号。
参数:
thread -- 回填创建的线程的PID。
attr -- 特殊要求。默认为NULL.
start_routine -- 被创建的线程所执行的函数。
void *(*start_routine) (void *)
arg -- start_routine函数的传参。
*/
pthread_create(pd + i,NULL,func,pth_argv);//创建线程
}
for(i = 0;i<PTHREAD_NUM;i++)
{
/*
int pthread_join(pthread_t thread, void **retval);
描述:给线程号为thread的线程收尸(线程结束后会变成僵尸线程(不占用空间,但占用线程号),父线程需要等待子线程结束,然后释放掉线程的线程号),
一般是谁创建谁收尸(不是铁律,线程之间平等),可以起到阻塞非盲等的状态。
返回值:成功时返回 0;出错时,它返回一个错误编号。
参数:
thread -- 线程ID
retval -- 回填PID为thread的线程的的返回值,可以为NULL,为NULL时,父线程将不在接收到子线程回传的返回值。
*/
//pthread_join(pd[i],(void **)&pth_return);//等待线程结束
pthread_join(pd[i],NULL);//等待线程结束
//free(pth_return);//释放掉线程返回值结构体
}
}
t2 = clock();
printf("COST %ldms\n",(t2 - t1) * 1000 / CLOCKS_PER_SEC);
return 0;
}
也是没有明显的优化效果。
void Func6()
{
register int i, j;
register int i_, j_;
register int i__, j__;
int block = 8;
int id = fork();
if(id == 0)
{
for(i = 1; i < HEIGHT / 2; i += block)
{
for(j = 1; j < WIDTH - 1; j += block)
{
i__ = minn(HEIGHT / 2, i + block);
j__ = minn(WIDTH - 1, j + block);
for(i_ = i; i_ < i__; i_ ++)
{
for(j_ = j; j_ < j__; j_ ++)
{
img[i_][j_] = (img[i_][j_ - 1] + img[i_][j_ + 1] + img[i_ - 1][j_] + img[i_ + 1][j_]) / 4;
}
}
}
}
exit(0);
}
else
{
for(i = HEIGHT / 2; i < HEIGHT - 1; i += block)
{
for(j = 1; j < WIDTH - 1; j += block)
{
i__ = minn(HEIGHT - 1, i + block);
j__ = minn(WIDTH - 1, j + block);
for(i_ = i; i_ < i__; i_ ++)
{
for(j_ = j; j_ < j__; j_ ++)
{
img[i_][j_] = (img[i_][j_ - 1] + img[i_][j_ + 1] + img[i_ - 1][j_] + img[i_ + 1][j_]) / 4;
}
}
}
}
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章