linux netfilter nat2
阅读原文时间:2023年07月09日阅读:1

Netfilter Connection Tracking and NAT Implementation

4 Implementation: Netfilter NAT

NAT is a function module built upon conntrack module, it relies on connection tracking’s results to work properly.

Again, not all protocols supports NAT.

Data structures:

Protocols that support NAT needs to implement the methods defined in:

  • struct nf_nat_l3proto {}
  • struct nf_nat_l4proto {}

Functions:

  • nf_nat_inet_fn(): core of NAT module, will be called at all hooking points except NF_INET_FORWARD.

    // net/netfilter/nf_nat_core.c

    static struct nf_nat_hook nat_hook = {
    .parse_nat_setup = nfnetlink_parse_nat_setup,
    .decode_session = __nf_nat_decode_session,
    .manip_pkt = nf_nat_manip_pkt,
    };

    static int __init nf_nat_init(void)
    {
    nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);

    nf_ct_helper_expectfn_register(&follow_master_nat);
    
    RCU_INIT_POINTER(nf_nat_hook, &nat_hook);

    }

    MODULE_LICENSE("GPL");
    module_init(nf_nat_init);

    // include/net/netfilter/nf_nat_l3proto.h

    struct nf_nat_l3proto {
    u8 l3proto; // e.g. AF_INET

    u32     (*secure_port    )(const struct nf_conntrack_tuple *t, __be16);
    bool    (*manip_pkt      )(struct sk_buff *skb, ...);
    void    (*csum_update    )(struct sk_buff *skb, ...);
    void    (*csum_recalc    )(struct sk_buff *skb, u8 proto, ...);
    void    (*decode_session )(struct sk_buff *skb, ...);
    int     (*nlattr_to_range)(struct nlattr *tb[], struct nf_nat_range2 *range);

    };

manip is the abbraviation of manipulate in the code:

// include/net/netfilter/nf_nat_l4proto.h

struct nf_nat_l4proto {
    u8 l4proto; // L4 proto id, e.g. IPPROTO_UDP, IPPROTO_TCP

    // Modify L3/L4 header according to the given tuple and NAT type (SNAT/DNAT)
    bool (*manip_pkt)(struct sk_buff *skb, *l3proto, *tuple, maniptype);

    // Create a unique tuple
    // e.g. for UDP, will generate a 16bit dst_port with src_ip, dst_ip, src_port and a rand
    void (*unique_tuple)(*l3proto, tuple, struct nf_nat_range2 *range, maniptype, struct nf_conn *ct);

    // If the address range is exhausted the NAT modules will begin to drop packets.
    int (*nlattr_to_range)(struct nlattr *tb[], struct nf_nat_range2 *range);
};

Implementations of these methods, see net/netfilter/nf_nat_proto_*.c. For example, the TCP’s implementation:

// net/netfilter/nf_nat_proto_tcp.c

const struct nf_nat_l4proto nf_nat_l4proto_tcp = {
    .l4proto        = IPPROTO_TCP,
    .manip_pkt        = tcp_manip_pkt,
    .in_range        = nf_nat_l4proto_in_range,
    .unique_tuple        = tcp_unique_tuple,
    .nlattr_to_range    = nf_nat_l4proto_nlattr_to_range,
};

nf_nat_inet_fn() will be called in following hooking points:

  • NF_INET_PRE_ROUTING
  • NF_INET_POST_ROUTING
  • NF_INET_LOCAL_OUT
  • NF_INET_LOCAL_IN

namely, all Netfilter hooking points except NF_INET_FORWARD.

Priorities at these hooking points: Conntrack > NAT > Packet Filtering.

conntrack has a higher priority than NAT, since NAT relies on the results of connection tracking.

Fig. NAT

unsigned int
nf_nat_inet_fn(void *priv, struct sk_buff *skb, const struct nf_hook_state *state)
{
    ct = nf_ct_get(skb, &ctinfo);
    if (!ct)    // exit NAT if conntrack not exist. This is why we say NAT relies on conntrack's results
        return NF_ACCEPT;

    nat = nfct_nat(ct);

    switch (ctinfo) {
    case IP_CT_RELATED:
    case IP_CT_RELATED_REPLY: /* Only ICMPs can be IP_CT_IS_REPLY.  Fallthrough */
    case IP_CT_NEW: /* Seen it before? This can happen for loopback, retrans, or local packets. */
        if (!nf_nat_initialized(ct, maniptype)) {
            struct nf_hook_entries *e = rcu_dereference(lpriv->entries); // obtain all NAT rules
            if (!e)
                goto null_bind;

            for (i = 0; i < e->num_hook_entries; i++) { // execute NAT rules in order
                if (e->hooks[i].hook(e->hooks[i].priv, skb, state) != NF_ACCEPT )
                    return ret;                         // return if any rule returns non ACCEPT verdict

                if (nf_nat_initialized(ct, maniptype))
                    goto do_nat;
            }
null_bind:
            nf_nat_alloc_null_binding(ct, state->hook);
        } else { // Already setup manip
            if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
                goto oif_changed;
        }
        break;
    default: /* ESTABLISHED */
        if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
            goto oif_changed;
    }
do_nat:
    return nf_nat_packet(ct, ctinfo, state->hook, skb);
oif_changed:
    nf_ct_kill_acct(ct, ctinfo, skb);
    return NF_DROP;
}

It first queries conntrack info for this packet, if conntrack info not exists, it means this connection could not be tracked, then we could never perform NAT for it. So just exit NAT in this case.

If conntrack info exists, and the connection is in IP_CT_RELATED or IP_CT_RELATED_REPLY or IP_CT_NEW states, then get all NAT rules.

If found, execute nf_nat_packet() method, it will further call protocol-specific manip_pkt method to modify the packet. If failed, the packet will be dropped.

Masquerade

NAT module could be configured in two fashions:

  1. Normal: change IP1 to IP2 if matching XXX.
  2. Special: change IP1 to dev1's IP if matching XXX, this is a special case of SNAT, called masquerade.

Pros & Cons:

  • Masquerade differentiates itself from SNAT in that when device’s IP address changes, the rules still valid. It could be seen as dynamic SNAT (dynamically adapting to the source IP changes in SNAT rules).

  • The drawback of masquerade is that it has degraded performance compared with SNAT, and this is easy to understand.

    // net/netfilter/nf_nat_core.c

    /* Do packet manipulations according to nf_nat_setup_info. */
    unsigned int nf_nat_packet(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
    unsigned int hooknum, struct sk_buff *skb)
    {
    enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
    enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
    unsigned int verdict = NF_ACCEPT;

    statusbit = (mtype == NF_NAT_MANIP_SRC? IPS_SRC_NAT : IPS_DST_NAT)
    
    if (dir == IP_CT_DIR_REPLY)     // Invert if this is reply dir
        statusbit ^= IPS_NAT_MASK;
    
    if (ct->status & statusbit)     // Non-atomic: these bits don't change. */
        verdict = nf_nat_manip_pkt(skb, ct, mtype, dir);
    
    return verdict;

    }

    static unsigned int nf_nat_manip_pkt(struct sk_buff *skb, struct nf_conn *ct,
    enum nf_nat_manip_type mtype, enum ip_conntrack_dir dir)
    {
    struct nf_conntrack_tuple target;

    /* We are aiming to look like inverse of other direction. */
    nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
    
    l3proto = __nf_nat_l3proto_find(target.src.l3num);
    l4proto = __nf_nat_l4proto_find(target.src.l3num, target.dst.protonum);
    if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype)) // protocol-specific processing
        return NF_DROP;
    
    return NF_ACCEPT;

    }

5. Configuration and monitoring

$ modinfo nf_conntrack
filename:       /lib/modules/4.19.118-1.el7.centos.x86_64/kernel/net/netfilter/nf_conntrack.ko
license:        GPL
alias:          nf_conntrack-10
alias:          nf_conntrack-2
alias:          ip_conntrack
srcversion:     4BBDB5BBEF460DF5F079C59
depends:        nf_defrag_ipv6,libcrc32c,nf_defrag_ipv4
retpoline:      Y
intree:         Y
name:           nf_conntrack
vermagic:       4.19.118-1.el7.centos.x86_64 SMP mod_unload modversions
parm:           tstamp:Enable connection tracking flow timestamping. (bool)
parm:           acct:Enable connection tracking flow accounting. (bool)
parm:           nf_conntrack_helper:Enable automatic conntrack helper assignment (default 0) (bool)
parm:           expect_hashsize:uint

Remove the module:

$ rmmod nf_conntrack_netlink nf_conntrack

Load the module:

$ modprobe nf_conntrack

# Also support to pass configuration parameters, e.g.:
$ modprobe nf_conntrack nf_conntrack_helper=1 expect_hashsize=131072


$ sysctl -a | grep nf_conntrack
net.netfilter.nf_conntrack_acct = 0
net.netfilter.nf_conntrack_buckets = 262144                 # hashsize = nf_conntrack_max/nf_conntrack_buckets
net.netfilter.nf_conntrack_checksum = 1
net.netfilter.nf_conntrack_count = 2148
... # DCCP options
net.netfilter.nf_conntrack_events = 1
net.netfilter.nf_conntrack_expect_max = 1024
... # IPv6 options
net.netfilter.nf_conntrack_generic_timeout = 600
net.netfilter.nf_conntrack_helper = 0
net.netfilter.nf_conntrack_icmp_timeout = 30
net.netfilter.nf_conntrack_log_invalid = 0
net.netfilter.nf_conntrack_max = 1048576                    # conntrack table size
... # SCTP options
net.netfilter.nf_conntrack_tcp_be_liberal = 0
net.netfilter.nf_conntrack_tcp_loose = 1
net.netfilter.nf_conntrack_tcp_max_retrans = 3
net.netfilter.nf_conntrack_tcp_timeout_close = 10
net.netfilter.nf_conntrack_tcp_timeout_close_wait = 60
net.netfilter.nf_conntrack_tcp_timeout_established = 21600
net.netfilter.nf_conntrack_tcp_timeout_fin_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_last_ack = 30
net.netfilter.nf_conntrack_tcp_timeout_max_retrans = 300
net.netfilter.nf_conntrack_tcp_timeout_syn_recv = 60
net.netfilter.nf_conntrack_tcp_timeout_syn_sent = 120
net.netfilter.nf_conntrack_tcp_timeout_time_wait = 120
net.netfilter.nf_conntrack_tcp_timeout_unacknowledged = 300
net.netfilter.nf_conntrack_timestamp = 0
net.netfilter.nf_conntrack_udp_timeout = 30
net.netfilter.nf_conntrack_udp_timeout_stream = 180

conntrack statistics

$ cat /proc/net/stat/nf_conntrack
entries   searched found    new      invalid  ignore   delete   delete_list insert   insert_failed drop     early_drop icmp_error  expect_new expect_create expect_delete search_restart
000008e3  00000000 00000000 00000000 0000309d 001e72d4 00000000 00000000    00000000 00000000      00000000 00000000   000000ee    00000000   00000000      00000000       000368d7
000008e3  00000000 00000000 00000000 00007301 002b8e8c 00000000 00000000    00000000 00000000      00000000 00000000   00000170    00000000   00000000      00000000       00035794
000008e3  00000000 00000000 00000000 00001eea 001e6382 00000000 00000000    00000000 00000000      00000000 00000000   00000059    00000000   00000000      00000000       0003f166
...

There is also a command line tool conntrack:

$ conntrack -S
cpu=0   found=0 invalid=743150 ignore=238069 insert=0 insert_failed=0 drop=195603 early_drop=118583 error=16 search_restart=22391652
cpu=1   found=0 invalid=2004   ignore=402790 insert=0 insert_failed=0 drop=44371  early_drop=34890  error=0  search_restart=1225447
...

Fields:

  • ignore: untracked packets (recall that only packets of trackable protocols will be tracked)

conntrack table usage

Number of current conntrack entries:

$ cat /proc/sys/net/netfilter/nf_conntrack_count
257273

Number of max allowed conntrack entries:

$ cat /proc/sys/net/netfilter/nf_conntrack_max
262144

6. Conntrack related issues

Symptoms

Application layer symptoms

  1. Probabilistic connection timeout.

    E.g. if the application is written in Java, the raised errors are jdbc4.CommunicationsException communications link failure, etc.

  2. Existing (e.g. established) connections works normally.

    That is to say, there are no read/write timeouts or something like that at that moment, but only connect timeouts.

Network layer symptoms

  1. With traffic capturing, we could see the first packet (SYN) got siliently dropped by the kernel.

    Unfortunately, common NIC stats (ifconfig) and kernel stats (/proc/net/softnet_stat) don't show these droppings.

  2. SYN got restransmitted after 1s+, or the connection is closed by retransmission.

    Retransmission of the first SYN takes 1s, this is a hardcode value in the kernel, not configurable (See appendix for the detailed implementation) .

    Considering other overheads, the real retransmission will take place 1+ second’s later. If the client has a very small connect timeout setting, e.g. 1.05s, then the connection will be closed before retransmission, and reports connection timeout errors to upper layers.

OS/kernel layer symptoms

Kernel log,

$ demsg -T
[Tue Apr  6 18:12:30 2021] nf_conntrack: nf_conntrack: table full, dropping packet
[Tue Apr  6 18:12:30 2021] nf_conntrack: nf_conntrack: table full, dropping packet
[Tue Apr  6 18:12:30 2021] nf_conntrack: nf_conntrack: table full, dropping packet
...

Trouble shooting

The above described phenomenons indicate that conntrack table is blown out.

$ cat /proc/sys/net/netfilter/nf_conntrack_count
257273

$ cat /proc/sys/net/netfilter/nf_conntrack_max
262144

Compare above two numbers, we could conclude that conntrack table indeeded get blown out.

Besides, we could also see dropping statistics in cat /proc/net/stat/nf_conntrack or conntrack -S output.

Resolution

With decreasing priority:

  1. Increase conntrack table size

    Runtime configuration (will not disrupt existing connections/traffic) :

     $ sysctl -w net.netfilter.nf_conntrack_max=524288
     $ echo 131072 > /sys/module/nf_conntrack/parameters/hashsize # recommendation: hashsize=nf_conntrack_count/4

    Permanent configuration:

     $ echo 'net.netfilter.nf_conntrack_max = 524288' >> /etc/sysctl.conf
    
     # Write hashsize either to system boot file or module config file
     # Method 1: write to system boot file
     $ echo 'echo 131072 > /sys/module/nf_conntrack/parameters/hashsize' >> /etc/rc.local
     # Method 2: write to module load file
     $ echo 'options nf_conntrack expect_hashsize=131072 hashsize=131072' >> /etc/modprobe.d/nf_conntrack.conf

    Side effect:more memory will be reserved by conntrack module. Refer to the appendix for the detailed calculation.

  2. Decrease GC durations (timeout values)

    Besides increase conntrack table size, we could also decrease conntrack GC values (also called timeouts), this will acclerate eviction of stale entries.

    nf_conntrack has several timeout setting, each for entries of different TCP states (established、fin_wait、time_wait, etc).

    For example, the default timeout for established state conntrack entries is 423000s (5 days!) . Possible reason for so large a value may be: TCP/IP specification allows established connection stays idle for infinite long time (but still alive) [8], specific implementations (Linux、BSD、Windows, etc) could set their own max allowed idle timeout. To avoid to accidently GC out such connection, Linux kernel chose a long enough duration. [8] recommends to timeout value to be no smaller than 2 hours 4 minutes (as mentioned previously, Cilium implements its own CT module, as comparison and reference,Cilium's established timeout is 6 hours). But there are also recommendations that are far more smaller than this, such as 20 minutes.

    Unless certainly know what you are doing, you should decrease this value with caution, such as 6 hours, which is already smaller significantly than the default one.

    Runtime configuration:

     $ sysctl -w net.netfilter.nf_conntrack_tcp_timeout_established = 21600

    Permanent configuration:

     $ echo 'net.netfilter.nf_conntrack_tcp_timeout_established = 21600' >> /etc/sysctl.conf

    You could also consider to decrease the other timeout values (especially nf_conntrack_tcp_timeout_time_wait, which defaults to 120s). But still to remind: unless sure what you’re doing, do not decrease these values radically.

7. Summary

Connection tracking (conntrack) is a fairly fundamental and important network module, but it goes into normal developer or system maintainer’s eyes only when they are stucked in some specific network troubles.

For example, in highly concurrent connection conditions, L4LB node will receive large amounts of short-lived requestions/connections, which may breakout the conntrack table. Phenomenons in this case:

  • Clients connect to L4LB failed, the failures may be random, but may also be bulky.
  • Client retries may succeed, but may also failed again and again.
  • Capturing traffic at L4LB nodes, could see that L4LB nodes received SYNC (take TCP as example) packets, but no ACK is replied, in other words, the packets get siliently dropped.

The reasons here maybe that conntrack table size is not big enough, or GC interval is too large, or even there are bugs in conntrack GC.

8. Appendix

Call stack: tcp_connect() -> tcp_connect_init() -> tcp_timeout_init().

// net/ipv4/tcp_output.c
/* Do all connect socket setups that can be done AF independent. */
static void tcp_connect_init(struct sock *sk)
{
    inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
    ...
}

// include/net/tcp.h
static inline u32 tcp_timeout_init(struct sock *sk)
{
    // Get SYN-RTO: return -1 if
    //   * no BPF programs attached to the socket/cgroup, or
    //   * there are BPF programs, but the programs excuting failed
    //
    // Unless users write their own BPF programs and attach to cgroup/socket,
    // there will be no BPF programs. so here will (always) return -1
    timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);

    if (timeout <= 0)                // timeout == -1, using default value in the below
        timeout = TCP_TIMEOUT_INIT;  // defined as the HZ of the system, which is effectively 1 second, see below
    return timeout;
}

// include/net/tcp.h
#define TCP_RTO_MAX    ((unsigned)(120*HZ))
#define TCP_RTO_MIN    ((unsigned)(HZ/5))
#define TCP_TIMEOUT_MIN    (2U) /* Min timeout for TCP timers in jiffies */
#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))    /* RFC6298 2.1 initial RTO value    */

$ cat /proc/slabinfo | head -n2; cat /proc/slabinfo | grep conntrack
slabinfo - version: 2.1
# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit> <batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail>
nf_conntrack      512824 599505    320   51    4 : tunables    0    0    0 : slabdata  11755  11755      0

in the above output, objsize means the kernel object size (struct nf_conn here), in unit of bytes. So the above information tells us that each conntrack entry takes 320 bytes of memory.

If page overheads are ignored (kernel allocates memory with slabs), then the memory usage under different table sizes would be:

  • nf_conntrack_max=512K512K * 320Byte = 160MB
  • nf_conntrack_max=1M1M * 320Byte = 320MB

For more accurate calculation, refer to [9].

References

  1. Netfilter connection tracking and NAT implementation. Proc. Seminar on Network Protocols in Operating Systems, Dept. Commun. and Networking, Aalto Univ. 2013.
  2. Cilium: Kubernetes without kube-proxy
  3. L4LB for Kubernetes: Theory and Practice with Cilium+BGP+ECMP
  4. Docker bridge network mode
  5. Wikipedia: Netfilter
  6. Conntrack tales - one thousand and one flows
  7. How connection tracking in Open vSwitch helps OpenStack performance
  8. NAT Behavioral Requirements for TCP, RFC5382
  9. Netfilter Conntrack Memory Usage