HashSet存放的是散列值,它是按照元素的散列值来存取元素的。
元素的散列值通过hashCode方法计算
HashSet通过判断两个元素的Hash值是否相等,如果相等就会用equals方法比较,如果equals方法也返回true则视为同一个元素
继承于AbstractSet,并且实现了Set接口
不会出现重复元素(Set的特性),添加重复元素是不生效的;
添加的元素是无序的;
可以出现NULL;
底层基于HashMap,HashSet的操作函数,实际上都是通过map实现的;
线程不安全
去重
集合运算
booleanadd(E object)
voidclear()
Object clone()
booleancontains(Object object)
booleanisEmpty()
Iterator
booleanremove(Object object)
intsize()
基于HashMap实现的,默认构造函数是构建一个初始容量为16,负载因子为0.75 的HashMap。封装了一个 HashMap 对象来存储所有的集合元素,所有放入 HashSet 中的集合元素实际上由 HashMap 的 key 来保存,而 HashMap 的 value 则存储了一个 PRESENT,它是一个静态的 Object 对象。
import java.util.AbstractSet;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Set;
import javax.swing.text.html.HTMLDocument.Iterator;
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
{
static final long serialVersionUID = -5024744406713321676L;
// 底层使用HashMap来保存HashSet中所有元素。
private transient HashMap<E,Object> map;
// 定义一个虚拟的Object对象作为HashMap的value,将此对象定义为static final。
private static final Object PRESENT = new Object();
// 默认的无参构造器,构造一个空的HashSet。
// 实际底层会初始化一个空的HashMap,并使用默认初始容量为16和加载因子0.75。
public HashSet() {
map = new HashMap<E,Object>();
}
// 构造一个包含指定collection中的元素的新set。
//
// 实际底层使用默认的加载因子0.75和足以包含指定
// collection中所有元素的初始容量来创建一个HashMap。
// @param c 其中的元素将存放在此set中的collection。
public HashSet(Collection<? extends E> c) {
map = new HashMap<E,Object>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
}
// 以指定的initialCapacity和loadFactor构造一个空的HashSet。
//
// 实际底层以相应的参数构造一个空的HashMap。
// @param initialCapacity 初始容量。
// @param loadFactor 加载因子。
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<E,Object>(initialCapacity, loadFactor);
}
// 以指定的initialCapacity构造一个空的HashSet。
//
// 实际底层以相应的参数及加载因子loadFactor为0.75构造一个空的HashMap。
// @param initialCapacity 初始容量。
public HashSet(int initialCapacity) {
map = new HashMap<E,Object>(initialCapacity);
}
// 以指定的initialCapacity和loadFactor构造一个新的空链接哈希集合。
// 此构造函数为包访问权限,不对外公开,实际只是是对LinkedHashSet的支持。
//
// 实际底层会以指定的参数构造一个空LinkedHashMap实例来实现。
// @param initialCapacity 初始容量。
// @param loadFactor 加载因子。
// @param dummy 标记。
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<E,Object>(initialCapacity, loadFactor);
}
// 返回对此set中元素进行迭代的迭代器。返回元素的顺序并不是特定的。
//
// 底层实际调用底层HashMap的keySet来返回所有的key。
// 可见HashSet中的元素,只是存放在了底层HashMap的key上,
// value使用一个static final的Object对象标识。
// @return 对此set中元素进行迭代的Iterator。
public Iterator<E> iterator() {
return map.keySet().iterator();
}
// 返回此set中的元素的数量(set的容量)。
//
// 底层实际调用HashMap的size()方法返回Entry的数量,就得到该Set中元素的个数。
// @return 此set中的元素的数量(set的容量)。
public int size() {
return map.size();
}
// 如果此set不包含任何元素,则返回true。
//
// 底层实际调用HashMap的isEmpty()判断该HashSet是否为空。
// @return 如果此set不包含任何元素,则返回true。
public boolean isEmpty() {
return map.isEmpty();
}
// 如果此set包含指定元素,则返回true。
// 更确切地讲,当且仅当此set包含一个满足(o==null ? e==null : o.equals(e))
// 的e元素时,返回true。
//
// 底层实际调用HashMap的containsKey判断是否包含指定key。
// @param o 在此set中的存在已得到测试的元素。
// @return 如果此set包含指定元素,则返回true。
public boolean contains(Object o) {
return map.containsKey(o);
}
// 如果此set中尚未包含指定元素,则添加指定元素。
// 更确切地讲,如果此 set 没有包含满足(e==null ? e2==null : e.equals(e2))
// 的元素e2,则向此set 添加指定的元素e。
// 如果此set已包含该元素,则该调用不更改set并返回false。
// 底层实际将将该元素作为key放入HashMap。
// 由于HashMap的put()方法添加key-value对时,当新放入HashMap的Entry中key
//与集合中原有Entry的key相同(hashCode()返回值相等,通过equals比较也返回true),
//新添加的Entry的value会将覆盖原来Entry的value,但key不会有任何改变,
// 因此如果向HashSet中添加一个已经存在的元素时,新添加的集合元素将不会被放入HashMap中,
// 原来的元素也不会有任何改变,这也就满足了Set中元素不重复的特性。
// @param e 将添加到此set中的元素。
// @return 如果此set尚未包含指定元素,则返回true。
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
// 如果指定元素存在于此set中,则将其移除。
// 更确切地讲,如果此set包含一个满足(o==null ? e==null : o.equals(e))的元素e,
// 则将其移除。如果此set已包含该元素,则返回true
// (或者:如果此set因调用而发生更改,则返回true)。(一旦调用返回,则此set不再包含该元素)。
//
// 底层实际调用HashMap的remove方法删除指定Entry。
// @param o 如果存在于此set中则需要将其移除的对象。
// @return 如果set包含指定元素,则返回true。
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}
// 从此set中移除所有元素。此调用返回后,该set将为空。
//
// 底层实际调用HashMap的clear方法清空Entry中所有元素。
public void clear() {
map.clear();
}
// 返回此HashSet实例的浅表副本:并没有复制这些元素本身。
// 底层实际调用HashMap的clone()方法,获取HashMap的浅表副本,并设置到HashSet中。
public Object clone() {
try {
HashSet<E> newSet = (HashSet<E>) super.clone();
newSet.map = (HashMap<E, Object>) map.clone();
return newSet;
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
}
第一步:根据iterator()获取HashSet的迭代器。
第二步:遍历迭代器获取各个元素。
用for
// 假设set是HashSet对象
for(Iterator iterator = set.iterator();
iterator.hasNext(); ) {
System.out.println(iterator.next().toString());
}
用while
// 假设set是HashSet对象
Iterator iterator = set.iterator();
while(iterator.hasNext())
System.out.println(iterator.next().toString());
第一步:根据toArray()获取HashSet的元素集合对应的数组。
第二步:遍历数组,获取各个元素。
// 假设set是HashSet对象,并且set中元素是String类型
String[] arr = (String[])set.toArray(new String[0]);
for(String str:arr)
System.out.printf("for each : %s\n", str);
不推荐这种方式,很少用,个人也很不喜欢这种方式的遍历,但是可以学习一下Set如何转为数组!
// 假设set是HashSet对象,并且set中元素是String类型
for(String s : set)
System.out.printf("for each : %s\n", s);
知道泛型中的数据类型可以用这种方式遍历
Set遍历方式都是一样的,这里就那HashSet做演示了,之后不再演示了
基于二叉树对新添加的对象按照指定的顺序排序,每添加一个对象都会进行一次排序,并将对象插入到二叉树指定位置
Integer和String等基础数据类型可以直接按照TreeSet的默认排序存储
自定义的数据类型要实现Comparable接口,且要重写compareTo方法
TreeSet是用来排序的, 可以指定一个顺序, 对象存入之后会按照指定的顺序排列
public static void demo() {
TreeSet<Person> ts = new TreeSet<>();
ts.add(new Person("张三", 23));
ts.add(new Person("李四", 13));
ts.add(new Person("周七", 13));
ts.add(new Person("王五", 43));
ts.add(new Person("赵六", 33));
System.out.println(ts);
}
这个例子会报错,抛出异常java.lang.ClassCastException
说明出现了类型转换异常,原因在于TreeSet不知道如何进行比较元素,我们在Person类中没有指定如何比较,因此抛出这个异常。
解决方法
在自定义类(Person)中实现Comparable
接口,然后重写接口中的compareTo
方法
public class Person implements Comparable<Person> {
private String name;
private int age;
...
public int compareTo(Person o) {
return 0或1或-1;
}
}
因此,就可以自定义自己的排序方式了
按照年龄为主要条件排序:
public int compareTo(Person o) {
int num = this.age - o.age; //年龄是比较的主要条件
return num == 0 ? this.name.compareTo(o.name) : num;//姓名是比较的次要条件
}
按照姓名为主要条件排序(依据Unicode编码大小)
public int compareTo(Person o) {
int num = this.name.compareTo(o.name); //姓名是主要条件
return num == 0 ? this.age - o.age : num; //年龄是次要条件
}
按照姓名长度排序:
public int compareTo(Person o) {
int length = this.name.length() - o.name.length(); //比较长度为主要条件
int num = length == 0 ? this.name.compareTo(o.name) : length; //比较内容为次要条件
return num == 0 ? this.age - o.age : num; //比较年龄为次要条件
}
TreeSet排序除了用Comparable,我们还可以使用Comparator接口。
需求:现在要制定TreeSet中按照String长度比较String:
//定义一个类,实现Comparator接口,并重写compare()方法,
class CompareByLen implements Comparator<String> {
@Override
public int compare(String s1, String s2) { //按照字符串的长度比较
int num = s1.length() - s2.length(); //长度为主要条件
return num == 0 ? s1.compareTo(s2) : num; //内容为次要条件
}
}
public static void main(String[] args) {
TreeSet<String> ts = new TreeSet<>(new CompareByLen());
ts.add("wwwwwwww");
ts.add("w");
ts.add("wms");
ts.add("yyds");
ts.add("cccc");
ts.add("zxl");
System.out.println(ts);
}
执行结果[w, wms, zxl, cccc, yyds, wwwwwwww]
总结:
自然顺序(Comparable)
比较器顺序(Comparator)
两种方式的区别
扩展:
Comparable和Comparator的区别
继承HashSet,HashMap实现数据存储,双向链表记录顺序。线程不安全。
Set接口
HashSet
LinkedHashSet
TreeSet
手机扫一扫
移动阅读更方便
你可能感兴趣的文章