传统多线程方案会使用“即时创建, 即时销毁”的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器将处于不停的创建线程,销毁线程的状态。
一个线程的运行时间可以分为3部分:线程的启动时间、线程体的运行时间和线程的销毁时间。在多线程处理的情景中,如果线程不能被重用,就意味着每次创建都需要经过启动、销毁和运行3个过程。这必然会增加系统相应的时间,降低了效率。
使用线程池:由于线程预先被创建并放入线程池中,同时处理完当前任务之后并不销毁而是被安排处理下一个任务,因此能够避免多次创建线程,从而节省线程创建和销毁的开销,能带来更好的性能和系统稳定性。
这里使用创建Thread()实例来实现,下面会再用继承threading.Thread()的类来实现
# 创建队列实例, 用于存储任务
queue = Queue()
# 定义需要线程池执行的任务
def do_job():
while True:
i = queue.get()
time.sleep(1)
print 'index %s, curent: %s' % (i, threading.current_thread())
queue.task_done()
if __name__ == '__main__':
# 创建包括3个线程的线程池
for i in range(3):
t = Thread(target=do_job)
t.daemon=True # 设置线程daemon 主线程退出,daemon线程也会推出,即时正在运行
t.start()
# 模拟创建线程池3秒后塞进10个任务到队列
time.sleep(3)
for i in range(10):
queue.put(i)
queue.join()复制代码
输出结果
index 1, curent: <Thread(Thread-2, started daemon 139652180764416)>
index 0, curent: <Thread(Thread-1, started daemon 139652189157120)>
index 2, curent: <Thread(Thread-3, started daemon 139652172371712)>
index 4, curent: <Thread(Thread-1, started daemon 139652189157120)>
index 3, curent: <Thread(Thread-2, started daemon 139652180764416)>
index 5, curent: <Thread(Thread-3, started daemon 139652172371712)>
index 6, curent: <Thread(Thread-1, started daemon 139652189157120)>
index 7, curent: <Thread(Thread-2, started daemon 139652180764416)>
index 8, curent: <Thread(Thread-3, started daemon 139652172371712)>
index 9, curent: <Thread(Thread-1, started daemon 139652189157120)>
finish复制代码
可以看到所有任务都是在这几个线程中完成Thread-(1-3)
线程池基本原理: 我们把任务放进队列中去,然后开N个线程,每个线程都去队列中取一个任务,执行完了之后告诉系统说我执行完了,然后接着去队列中取下一个任务,直至队列中所有任务取空,退出线程。
上面这个例子生成一个有3个线程的线程池,每个线程都无限循环阻塞读取Queue队列的任务所有任务都只会让这3个预生成的线程来处理。
具体工作描述如下:
这个模式下有几个注意的点:
import socket
import threading
from threading import Thread
import threading
import sys
import time
import random
from Queue import Queue
host = ''
port = 8888
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(3)
class ThreadPoolManger():
"""线程池管理器"""
def __init__(self, thread_num):
# 初始化参数
self.work_queue = Queue()
self.thread_num = thread_num
self.__init_threading_pool(self.thread_num)
def __init_threading_pool(self, thread_num):
# 初始化线程池,创建指定数量的线程池
for i in range(thread_num):
thread = ThreadManger(self.work_queue)
thread.start()
def add_job(self, func, *args):
# 将任务放入队列,等待线程池阻塞读取,参数是被执行的函数和函数的参数
self.work_queue.put((func, args))
class ThreadManger(Thread):
"""定义线程类,继承threading.Thread"""
def __init__(self, work_queue):
Thread.__init__(self)
self.work_queue = work_queue
self.daemon = True
def run(self):
# 启动线程
while True:
target, args = self.work_queue.get()
target(*args)
self.work_queue.task_done()
# 创建一个有4个线程的线程池
thread_pool = ThreadPoolManger(4)
# 处理http请求,这里简单返回200 hello world
def handle_request(conn_socket):
recv_data = conn_socket.recv(1024)
reply = 'HTTP/1.1 200 OK \r\n\r\n'
reply += 'hello world'
print 'thread %s is running ' % threading.current_thread().name
conn_socket.send(reply)
conn_socket.close()
# 循环等待接收客户端请求
while True:
# 阻塞等待请求
conn_socket, addr = s.accept()
# 一旦有请求了,把socket扔到我们指定处理函数handle_request处理,等待线程池分配线程处理
thread_pool.add_job(handle_request, *(conn_socket, ))
s.close()复制代码
# 运行进程
[master][/data/web/advance_python/socket]$ python sock_s_threading_pool.py
# 查看线程池状况
[master][/data/web/advance_python/socket]$ ps -eLf|grep sock_s_threading_pool
lisa+ 27488 23705 27488 0 5 23:22 pts/30 00:00:00 python sock_s_threading_pool.py
lisa+ 27488 23705 27489 0 5 23:22 pts/30 00:00:00 python sock_s_threading_pool.py
lisa+ 27488 23705 27490 0 5 23:22 pts/30 00:00:00 python sock_s_threading_pool.py
lisa+ 27488 23705 27491 0 5 23:22 pts/30 00:00:00 python sock_s_threading_pool.py
lisa+ 27488 23705 27492 0 5 23:22 pts/30 00:00:00 python sock_s_threading_pool.py
# 跟我们预期一样一共有5个线程,一个主线程,4个线程池线程复制代码
这个线程池web服务器编写框架包括下面几个组成部分及步骤:
因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
但是对于IO密集型的任务,多线程还是起到很大效率提升,这是协同式多任务当一项任务比如网络 I/O启动,而在长的或不确定的时间,没有运行任何 Python 代码的需要,一个线程便会让出GIL,从而其他线程可以获取 GIL 而运行 Python。这种礼貌行为称为协同式多任务处理,它允许并发;多个线程同时等待不同事件。
两个线程在同一时刻只能有一个执行 Python ,但一旦线程开始连接,它就会放弃 GIL ,这样其他线程就可以运行。这意味着两个线程可以并发等待套接字连接,这是一件好事。在同样的时间内它们可以做更多的工作。
服务器CPU核数有限,能够同时并发的线程数有限,并不是开得越多越好,以及线程切换是有开销的,如果线程切换过于频繁,反而会使性能降低
线程执行过程中,计算时间分为两部分:
那么如果计算时间占50%, 等待时间50%,那么为了利用率达到最高,可以开2个线程:假如工作时间是2秒, CPU计算完1秒后,线程等待IO的时候需要1秒,此时CPU空闲了,这时就可以切换到另外一个线程,让CPU工作1秒后,线程等待IO需要1秒,此时CPU又可以切回去,第一个线程这时刚好完成了1秒的IO等待,可以让CPU继续工作,就这样循环的在两个线程之前切换操作。
那么如果计算时间占20%, 等待时间80%,那么为了利用率达到最高,可以开5个线程:可以想象成完成任务需要5秒,CPU占用1秒,等待时间4秒,CPU在线程等待时,可以同时再激活4个线程,这样就把CPU和IO等待时间,最大化的重叠起来
抽象一下,计算线程数设置的公式就是:N核服务器,通过执行业务的单线程分析出本地计算时间为x,等待时间为y,则工作线程数(线程池线程数)设置为 N*(x+y)/x,能让CPU的利用率最大化。由于有GIL的影响,python只能使用到1个核,所以这里设置N=1
如果文章对你有收获,可以收藏转发,这会给我一个大大鼓励哟!
想要获取更多Python学习资料可以加 QQ:2955637827私聊 或加Q群630390733 大家一起来学习讨论吧! 本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理
手机扫一扫
移动阅读更方便
你可能感兴趣的文章