3
2 2 0
1 2
3 3 2
1 3
1 2
3 3 1
1 2
2 3
4
2
12
设f[i][j]为在第i个点填了j的合法方案。
则f[i][j]=∏(f[son(i)][l])(l∈[1,j−k]∪[j+k,m])。
时间复杂度为O(nm)。
观察到f值呈对称状,且中间一段的值是相同的。
利用这个性质优化动态规划。
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define ll long long
#define ln(x,y) ll(log(x)/log(y))
#define sqr(x) ((x)*(x))
using namespace std;
const char* fin="label.in";
const char* fout="label.out";
const ll inf=0x7fffffff;
const ll maxn=107,maxm=11007,mo=1000000007;
ll t,n,m,delta,i,j,k,tot,ans,tmd;
ll fi[maxn],la[maxn*2],ne[maxn*2];
ll f[maxn][maxm],g[maxn][maxm],h[maxn][maxm];
void add_line(ll a,ll b){
tot++;
ne[tot]=fi[a];
la[tot]=b;
fi[a]=tot;
}
void dfs(ll v,ll from){
ll i,j,k,tmp,pre=-1,tmb=0,o;
for (i=1;i<maxm;i++) f[v][i]=1;
for (k=fi[v];k;k=ne[k])
if (la[k]!=from){
dfs(la[k],v);
for (i=1;i<=tmd;i++){
tmp=0;
if (delta==0){
tmp=(tmp+g[la[k]][i]+h[la[k]][i]+mo-f[la[k]][i])%mo;
}else{
j=i-delta;
if (j>0) tmp=(tmp+g[la[k]][j])%mo;
j=i+delta;
if (j<=m) tmp=(tmp+h[la[k]][j])%mo;
}
f[v][i]=(f[v][i]*tmp)%mo;
}
}
for (i=2,j=tmd;i<=j;i++) if (f[v][i]==f[v][i-1]) {
pre=i-2;
break;
}else tmb=(tmb+f[v][i-1])%mo;
if (pre==-1) pre=tmd-1;//,tmb=(tmb+f[v][pre])%mo;
for (i=1;i<=pre;i++) g[v][i]=(g[v][i-1]+f[v][i])%mo;
for (j=min(m-pre+1,maxm);i<j;i++) g[v][i]=(g[v][i-1]+f[v][pre+1])%mo;
for (j=min(m,maxm-1);i<=j;i++) g[v][i]=(g[v][i-1]+f[v][m-i+1])%mo;
h[v][1]=(tmb*2+(m-2*pre+mo)%mo*f[v][pre+1])%mo;
for (i=2;i<=pre+1;i++) h[v][i]=(h[v][i-1]-f[v][i-1]+mo)%mo;
for (j=min(m-pre+1,maxm-1);i<=j && i<=m;i++) h[v][i]=(h[v][i-1]+mo-f[v][pre+1])%mo;
for (j=min(m,maxm-1);i<=j;i++) h[v][i]=(h[v][i-1]+mo-f[v][m-i+2])%mo;
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d",&t);
for (;t;t--){
scanf("%d%d%d",&n,&m,&delta);
tot=0;
tmd=min((m+1)/2,maxm-delta-5);
memset(fi,0,sizeof(fi));
memset(h,0,sizeof(h));
memset(g,0,sizeof(g));
for (i=1;i<n;i++){
scanf("%d%d",&j,&k);
add_line(j,k);
add_line(k,j);
}
dfs(1,0);
ans=h[1][1];
printf("%lld\n",ans);
}
return 0;
}
观察转移方程的性质,譬如对称之类的,可以优化动态规划。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章