本文参考源程序来自Fluidity。
TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数
\[\tilde{m}(a_1, a_2, \cdots, a_n) = \left\{
\begin{array}{ll}
a_1 & \text{if} \, \left| a_1 \right| \le Mh^2, \cr
m\left(a_1, a_2, \cdots, a_n\right) & \text{otherwise}, \end{array}\right.\]
其中\(m\left(a_1, a_2, \cdots, a_n\right)\)为原始minmod函数,\(M\)为系数。
针对高维情形可以参考Cockburn和Shu[2]的研究,高维情形与一维类似,但是主要区别在于构造修正minmod函数的两个参数
\[\begin{equation}
a_1 = \tilde{u}_h(m_i, K_0), \quad a_2 = v\Delta\bar{u}_h(m_i, K_0)
\end{equation}\]
其中 \(\tilde{u}_h(m_i, K_0)\) 为边界中点处近似解与单元均值之差 \(u_h(m_i, K_0) - \bar{u}_{K_0}\),\(\bar{u}_{K_0}\) 为单元 \(K_0\) 的单元均值。而这个 \(\Delta\bar{u}_h(m_i, K_0)\) 则是根据几何坐标插值后得到的边界中心值 \(u_h(m_1)\) 与 \(\bar{u}_{K_0}\) 之间差值,\(v\) 为大于1的系数,一般取1.5左右。
几何插值系数根据三个单元间坐标关系而定。如在计算边中点 \(m_1\) 的系数时,首先需确定除 \(b_0\) 和 \(b_1\) 外要取哪个单元进行插值(\(b_2\) 或 \(b_3\)),其中选取原则为以下两点
在确定第三个单元之后,我们便可以确定中点 \(m_1\) 插值系数。插值公式为
\[\begin{equation}
u_h(m_1) - u_h(b_0) = \alpha_1 \left( u_h(b_1) - u_h(b_0) \right) + \alpha_2 \left( u_h(b_2) - u_h(b_0) \right)
\end{equation}\]
其中插值系数根据三个三角形单元形心坐标而定
\[\begin{equation}
\left\{ \begin{array}{ll}
x_{m_1} - x_{b_0} = \alpha_1 \left( x_{b_1} - x_{b_0} \right) + \alpha_2 \left( x_{b_2} - x_{b_0} \right) \cr
y_{m_1} - y_{b_0} = \alpha_1 \left( y_{b_1} - y_{b_0} \right) + \alpha_2 \left( y_{b_2} - y_{b_0} \right)
\end{array} \right.
\end{equation}\]
在得到修正后的边界值与均值之差后,修正过程并没有结束。因为可能TVB限制器只修正了三个边中某两个边中点值,而剩下的边中点值保持不变,若此时采用新的三个边中点值进行重构,得到的重构值均值区别于原始单元均值,造成单元不守恒。
为解决此问题,需要对修正后的插值进行修正。假设 \(\Delta_i\) 为限制器得到的解
\[\begin{equation}
\Delta_i = \tilde{m}\left(\tilde{u}_h(m_i, K_0), v\Delta\bar{u}_h(m_i, K_0)\right)
\end{equation}\]
由于 \(\Delta_i\) 代表限制后边界中点值与单元均值之差,因此应当满足 \(\sum_{i=1}^3 \Delta_i = 0\)。若 \(\sum_{i=1}^3 \Delta_i \neq 0\),计算修正系数 \(\theta^+\) 与 \(\theta^-\)
\[\begin{equation}
\begin{array}{ll}
pos = \sum_{i=1}^3 \text{max} \left(0, \Delta_i\right), \quad neg = \sum_{i=1}^3 \text{max} \left(0, -\Delta_i\right) \cr
\theta^+ = \text{min} \left(1, \frac{neg}{pos} \right), \quad \theta^- = \text{min} \left(1, \frac{pos}{neg} \right)
\end{array}
\end{equation}\]
其中 \(pos\) 与 \(neg\) 分别是 \(\Delta_i\) 中正系数与负系数总和。采用 \(\theta^+\) 与 \(\theta^-\) 修正后限制值为
\[\begin{equation}
\hat{\Delta}_i = \theta^+ \text{max} \left(0, \Delta_i\right) - \theta^- \text{max} \left(0, -\Delta_i\right)
\end{equation}\]
此时满足 \(\sum_{i=1}^3 \hat{\Delta}_i = 0\),根据 \(\hat{\Delta}_i\) 进行重构便可得到限制后的解。
源程序文件为/assemble/Slope_limiters_DG.F90
。
subroutine cockburn_shu_setup_ele(ele, T, X)
integer, intent(in) :: ele
type(scalar_field), intent(inout) :: T
type(vector_field), intent(in) :: X
integer, dimension(:), pointer :: neigh, x_neigh
real, dimension(X%dim) :: ele_centre, face_2_centre
real :: max_alpha, min_alpha, neg_alpha
integer :: ele_2, ni, nj, face, face_2, i, nk, ni_skip, info, nl
real, dimension(X%dim, ele_loc(X,ele)) :: X_val, X_val_2
real, dimension(X%dim, ele_face_count(T,ele)) :: neigh_centre,&
& face_centre
real, dimension(X%dim) :: alpha1, alpha2
real, dimension(X%dim,X%dim) :: alphamat
real, dimension(X%dim,X%dim+1) :: dx_f, dx_c
integer, dimension(mesh_dim(T)) :: face_nodes
X_val=ele_val(X, ele)
ele_centre=sum(X_val,2)/size(X_val,2)
neigh=>ele_neigh(T, ele)
! x_neigh/=t_neigh only on periodic boundaries.
x_neigh=>ele_neigh(X, ele)
searchloop: do ni=1,size(neigh)
!----------------------------------------------------------------------
! Find the relevant faces.
!----------------------------------------------------------------------
ele_2=neigh(ni)
! Note that although face is calculated on field U, it is in fact
! applicable to any field which shares the same mesh topology.
face=ele_face(T, ele, ele_2)
face_nodes=face_local_nodes(T, face)
face_centre(:,ni) = sum(X_val(:,face_nodes),2)/size(face_nodes)
if (ele_2<=0) then
! External face.
neigh_centre(:,ni)=face_centre(:,ni)
cycle
end if
X_val_2=ele_val(X, ele_2)
neigh_centre(:,ni)=sum(X_val_2,2)/size(X_val_2,2)
if (ele_2/=x_neigh(ni)) then
! Periodic boundary case. We have to cook up the coordinate by
! adding vectors to the face from each side.
face_2=ele_face(T, ele_2, ele)
face_2_centre = &
sum(face_val(X,face_2),2)/size(face_val(X,face_2),2)
neigh_centre(:,ni)=face_centre(:,ni) + &
(neigh_centre(:,ni) - face_2_centre)
end if
end do searchloop
do ni = 1, size(neigh)
dx_c(:,ni)=neigh_centre(:,ni)-ele_centre !Vectors from ni centres to
! !ele centre
dx_f(:,ni)=face_centre(:,ni)-ele_centre !Vectors from ni face centres
!to ele centre
end do
alpha_construction_loop: do ni = 1, size(neigh)
!Loop for constructing Delta v(m_i,K_0) as described in C&S
alphamat(:,1) = dx_c(:,ni)
max_alpha = -1.0
ni_skip = 0
choosing_best_other_face_loop: do nj = 1, size(neigh)
!Loop over the other faces to choose best one to use
!for linear basis across face
if(nj==ni) cycle
!Construct a linear basis using all faces except for nj
nl = 1
do nk = 1, size(neigh)
if(nk==nj.or.nk==ni) cycle
nl = nl + 1
alphamat(:,nl) = dx_c(:,nk)
end do
!Solve for basis coefficients alpha
alpha2 = dx_f(:,ni)
call solve(alphamat,alpha2,info)
if((.not.any(alpha2<0.0)).and.alpha2(1)/norm2(alpha2)>max_alpha) &
& then
alpha1 = alpha2
ni_skip = nj
max_alpha = alpha2(1)/norm2(alpha2)
end if
end do choosing_best_other_face_loop
if(max_alpha<0.0) then
if(tolerate_negative_weights) then
min_alpha = huge(0.0)
ni_skip = 0
choosing_best_other_face_neg_weights_loop: do nj = 1, size(neigh)
!Loop over the other faces to choose best one to use
!for linear basis across face
if(nj==ni) cycle
!Construct a linear basis using all faces except for nj
nl = 1
do nk = 1, size(neigh)
if(nk==nj.or.nk==ni) cycle
nl = nl + 1
alphamat(:,nl) = dx_c(:,nk)
end do
!Solve for basis coefficients alpha
alpha2 = dx_f(:,ni)
call solve(alphamat,alpha2,info)
neg_alpha = 0.0
do i = 1, size(alpha2)
if(alpha2(i)<0.0) then
neg_alpha = neg_alpha + alpha2(i)**2
end if
end do
neg_alpha = sqrt(neg_alpha)
if(min_alpha>neg_alpha) then
alpha1 = alpha2
ni_skip = nj
min_alpha = neg_alpha
end if
end do choosing_best_other_face_neg_weights_loop
else
FLAbort('solving for alpha failed')
end if
end if
alpha(ele,ni,:) = 0.0
alpha(ele,ni,ni) = alpha1(1)
nl = 1
do nj = 1, size(neigh)
if(nj==ni.or.nj==ni_skip) cycle
nl = nl + 1
alpha(ele,ni,nj) = alpha1(nl)
end do
dx2(ele,ni) = norm2(dx_c(:,ni))
end do alpha_construction_loop
end subroutine cockburn_shu_setup_ele
subroutine limit_slope_ele_cockburn_shu(ele, T, X)
!!< Slope limiter according to Cockburn and Shu (2001)
!!< http://dx.doi.org/10.1023/A:1012873910884
integer, intent(in) :: ele
type(scalar_field), intent(inout) :: T
type(vector_field), intent(in) :: X
integer, dimension(:), pointer :: neigh, x_neigh, T_ele
real :: ele_mean
real :: pos, neg
integer :: ele_2, ni, face
real, dimension(ele_loc(T,ele)) :: T_val, T_val_2
real, dimension(ele_face_count(T,ele)) :: neigh_mean, face_mean
real, dimension(mesh_dim(T)+1) :: delta_v
real, dimension(mesh_dim(T)+1) :: Delta, new_val
integer, dimension(mesh_dim(T)) :: face_nodes
T_val=ele_val(T, ele)
ele_mean=sum(T_val)/size(T_val)
neigh=>ele_neigh(T, ele)
! x_neigh/=t_neigh only on periodic boundaries.
x_neigh=>ele_neigh(X, ele)
searchloop: do ni=1,size(neigh)
!----------------------------------------------------------------------
! Find the relevant faces.
!----------------------------------------------------------------------
ele_2=neigh(ni)
! Note that although face is calculated on field U, it is in fact
! applicable to any field which shares the same mesh topology.
face=ele_face(T, ele, ele_2)
face_nodes=face_local_nodes(T, face)
face_mean(ni) = sum(T_val(face_nodes))/size(face_nodes)
if (ele_2<=0) then
! External face.
neigh_mean(ni)=face_mean(ni)
cycle
end if
T_val_2=ele_val(T, ele_2)
neigh_mean(ni)=sum(T_val_2)/size(T_val_2)
end do searchloop
delta_v = matmul(alpha(ele,:,:),neigh_mean-ele_mean)
delta_loop: do ni=1,size(neigh)
Delta(ni)=TVB_minmod(face_mean(ni)-ele_mean, &
Limit_factor*delta_v(ni), dx2(ele,ni))
end do delta_loop
if (abs(sum(Delta))>1000.0*epsilon(0.0)) then
! Coefficients do not sum to 0.0
pos=sum(max(0.0, Delta))
neg=sum(max(0.0, -Delta))
Delta = min(1.0,neg/pos)*max(0.0,Delta) &
-min(1.0,pos/neg)*max(0.0,-Delta)
end if
new_val=matmul(A,Delta+ele_mean)
! Success or non-boundary failure.
T_ele=>ele_nodes(T,ele)
call set(T, T_ele, new_val)
end subroutine limit_slope_ele_cockburn_shu
[1] COCKBURN B, SHU C-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework[J]. Mathematics of Computation, 1989, 52(186): 411–411.
[2] COCKBURN B, SHU C-W. The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2): 199–224.
手机扫一扫
移动阅读更方便
你可能感兴趣的文章