Pandas 数据分析,高中体测练习
阅读原文时间:2023年07月15日阅读:2

分析体测成绩

体侧成绩转变成分数

开卷考试

excel完成可以

pandas读取excel代码中 完成

一个手输入

进一步,画图,分布,体重正常,肥胖,偏瘦比例,绘制饼图

男生跑步1000成绩,不及格,及格,中等,良好,优秀,柱状图绘制

导包、读取文件

import numpy as np

import pandas as pd

from pandas import Series,DataFrame

import matplotlib.pyplot as plt
%matplotlib inline

data = pd.read_excel('18级高一体测成绩汇总.xls')
data

班级

性别

姓名

1000米

50米

跳远

体前屈

引体

肺活量

身高

体重

BMI

 

0

1

高孜阳0611

4'13

8.88

195

12

1

2785

170

72.6

NaN

1

1

郝少杰1013

4'16

7.70

225

11

7

3133

174

52.7

NaN

2

1

郝梓烨0619

4'09

8.45

218

14

1

3901

169

46.5

NaN

3

1

何弘源1010

4'21

8.05

206

13

1

4946

183

79.7

NaN

4

1

刘硕鹏1212

3'44

7.52

210

13

9

3538

171

54.7

NaN

488

17

张乔楠0311

4'23

8.27

208

10

0

4647

176

69.5

NaN

489

17

郭泽森0333

5'19

9.55

210

15

6

7042

177

76

NaN

490

17

陈子龙061X

3'25

7.5

252

13

13

5755

181

65

NaN

491

17

王丹龙0636

4'39

7.81

208

14

11

5688

172

51.7

NaN

492

17

王玉涵0636

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

# 清洗数据
cond = data['班级'] != '班级' # 把有班级那一行的数据给删除

data = data[cond]   # 得到新的数据

data[:45]

班级

性别

姓名

1000米

50米

跳远

体前屈

引体

肺活量

身高

体重

BMI

 

0

1

高孜阳0611

4'13

8.88

195

12

1

2785

170

72.6

NaN

1

1

郝少杰1013

4'16

7.70

225

11

7

3133

174

52.7

NaN

2

1

郝梓烨0619

4'09

8.45

218

14

1

3901

169

46.5

NaN

3

1

何弘源1010

4'21

8.05

206

13

1

4946

183

79.7

NaN

4

1

刘硕鹏1212

3'44

7.52

210

13

9

3538

171

54.7

NaN

5

1

刘运硕0314

3'49

7.94

190

20

7

3970

175

66.4

NaN

6

1

吕晓瑶0314

3'54

7.75

186

11

7

3710

173

53.9

NaN

7

1

米孜聪0636

4'3

8.06

195

3

1

5578

178

83.1

NaN

8

1

聂浩然2719

4'01

7.75

220

15

10

3821

175

66.5

NaN

9

1

牛苗嘉1211

4'12

7.38

245

17

11

4423

167

53.9

NaN

10

1

牛砚哲2813

4

7.82

219

13

11

4031

173

57.4

NaN

11

1

齐子涵185x

4'13

7.37

228

9

15

4354

163

54.6

NaN

12

1

乔一甲0616

3'45

7.66

202

7

3

2238

179

61.1

NaN

13

1

任晓波0311

3'46

7.66

245

3

7

4811

177

63.9

NaN

14

1

戎小龙2633

0

0

0

0

0

0

0

NaN

NaN

15

1

桑淳熙0616

3'57

7.60

192

7

5

4147

174

59.2

NaN

16

1

田晓龙2411

4'18

8.14

210

8

4

4241

179

61.9

NaN

17

1

田玉聪2716

3'32

7.20

255

22

12

5324

183

63.4

NaN

18

1

王晨宇0613

3'56

8.15

207

13

12

4363

173

60.5

NaN

19

1

王家梁0630

3'47

8.15

202

13

16

5364

174

56

NaN

20

1

王乐天3331

3'53

7.85

210

3

7

3445

177

56.9

NaN

21

1

王一钊1213

3'57

7.85

220

9

2

5670

177

55.5

NaN

22

1

王子天0634

3'42

7.23

212

12

15

5709

185

72.3

NaN

23

1

王子鑫0012

4'3

7.68

218

15

3

4780

177

83.7

NaN

24

1

未晓锟1214

4'14

8.30

206

15

1

3358

173

46.6

NaN

25

1

张国瑞033x

4'04

8.15

205

9

5

3494

169

48.3

NaN

26

1

张皓天0632

4'04

7.55

190

12

5

3286

169

50.1

NaN

27

1

张泽地0310

4'02

7.55

240

5

12

4483

171

58.4

NaN

28

1

张智贤0318

3'57

7.89

220

9

11

4254

166

54.8

NaN

29

1

赵博翰101x

4'16

8.19

212

27

7

3498

169

68

NaN

30

1

赵泽凯0311

4'01

7.89

213

5

11

4322

174

55.9

NaN

31

1

赵泽宇0616

4'08

8.21

208

19

20

3917

166

51.9

NaN

32

1

左晶川1217

4'06

8.71

206

11

4

3970

172

47.8

NaN

34

2

贾和0633

4'22

7.97

215

9

9

3865

175

58.7

NaN

35

2

李森0636

0

0

0

0

0

0

0

NaN

NaN

36

2

李一帆1812

4'46

8.79

172

7

1

4750

174

88.6

NaN

37

2

李子阳0618

4'01

7.37

210

2

7

4714

182

62.5

NaN

38

2

吕星繁0312

0

0

0

0

0

0

0

NaN

NaN

39

2

赵凌云105x

4'13

7.77

208

8

7

4327

173

56

NaN

40

2

赵鹏悦2612

4'27

8.8

185

10

5

4745

164

74.8

NaN

42

3

宫诚博0612

3'43

6.89

276

16

12

5212

1.84

73.1

NaN

43

3

郭亚浩181X

4'04

7.25

240

13

8

4756

1.76

72

NaN

44

3

郝晓辰0013

3'38

7.36

246

22

11

4433

1.84

62.5

NaN

45

3

李国玺2310

4'19

8.17

220

18

1

4438

1.74

72.2

NaN

46

3

李一帆1218

4'08

7.8

227

15

1

6033

1.77

85.6

NaN

data.fillna(0, inplace=True) # 没有参加体侧的同学分数都填充成0

# 没有空数据了
data.isnull().any() #查询是否还有空数据

班级       False
性别       False
姓名       False
1000米   False
50米     False
跳远       False
体前屈     False
引体       False
肺活量     False
身高       False
体重       False
BMI     False
dtype: bool

data.head()

班级

性别

姓名

1000米

50米

跳远

体前屈

引体

肺活量

身高

体重

BMI

 

0

1

高孜阳0611

4'13

8.88

195.0

12

1

2785

170.0

72.6

0.0

1

1

郝少杰1013

4'16

7.70

225.0

11

7

3133

174.0

52.7

0.0

2

1

郝梓烨0619

4'09

8.45

218.0

14

1

3901

169.0

46.5

0.0

3

1

何弘源1010

4'21

8.05

206.0

13

1

4946

183.0

79.7

0.0

4

1

刘硕鹏1212

3'44

7.52

210.0

13

9

3538

171.0

54.7

0.0

把数据中的 4'13 转换成 小数

def convert(x):
   
  if isinstance(x, str):
      minute, second = x.split("'")
      minute = int(minute)
      second = int(second)
      return minute + second / 100.0
  else:
      return x


data['1000米'] = data['1000米'].map(convert)   # 映射
data.head()

班级 性别 姓名 1000米 50米 跳远 体前屈 引体 肺活量 身高 体重 BMI 0 1 男 高孜阳0611 4.13 8.88 195.0 12 1 2785 170.0 72.6 0.0 1 1 男 郝少杰1013 4.16 7.70 225.0 11 7 3133 174.0 52.7 0.0 2 1 男 郝梓烨0619 4.09 8.45 218.0 14 1 3901 169.0 46.5 0.0 3 1 男 何弘源1010 4.21 8.05 206.0 13 1 4946 183.0 79.7 0.0 4 1 男 刘硕鹏1212 3.44 7.52 210.0 13 9 3538 171.0 54.7 0.0

加载体侧成绩评分表

score = pd.read_excel('体侧成绩评分表.xls', header = [0,1])
score

男肺活量 女肺活量 男50米跑 女50米跑 男体前屈 … 女跳远 男引体 女仰卧 男1000 女800 成绩 分数 成绩 分数 成绩 分数 成绩 分数 成绩 分数 … 成绩 分数 成绩 分数 成绩 分数 成绩 分数 成绩 分数 0 4540 100 3150 100 7.1 100 7.8 100 23.6 100 … 204 100 16.0 100 53 100 3'30" 100 3'24" 100 1 4420 95 3100 95 7.2 95 7.9 95 21.5 95 … 198 95 15.0 95 51 95 3'35" 95 3'30" 95 2 4300 90 3050 90 7.3 90 8.0 90 19.4 90 … 192 90 14.0 90 49 90 3'40" 90 3'36" 90 3 4050 85 2900 85 7.4 85 8.3 85 17.2 85 … 185 85 13.0 85 46 85 3'47" 85 3'43" 85 4 3800 80 2750 80 7.5 80 8.6 80 15.0 80 … 178 80 12.0 80 43 80 3'55" 80 3'50" 80

把男1000 成绩 3'30 转换成小数

def convert(item):
  m, s = item.strip('"').split("'")
  m, s = int(m),int(s)
   
  return m + s / 100.0

score.iloc[:,-4] = score.iloc[:,-4].map(convert) # 获取它的索引

把女800 成绩 3'30 转换成小数

def convert(item):
  m, s = item.strip('"').split("'")
  m, s = int(m),int(s)
   
  return m + s / 100.0

score.iloc[:,-2] = score.iloc[:,-2].map(convert) # 获取它的索引

对应索引 男1000 男50米跑

data.columns =['班级', '性别', '姓名', '男1000', '男50米跑', '跳远', '体前屈', '引体', '肺活量', '身高', '体重',
      'BMI']
data

s.dtypes

成绩   float64
分数     int64
dtype: object

data.dtypes
data['男50米跑'] = data['男50米跑'].astype(np.float)   # 转换数据类型

data

for col in [ '男1000', '男50米跑']:
   
  s = score[col]   # 获取成绩的标准
   
  def convert(x):
      for i in range(len(s)):   # 获取长度循环
          if x <= s['成绩'].iloc[0]:               if x == 0:       # 判断是否没有成绩                   return 0                   return 100           elif x > s['成绩'].iloc[-1]:
              return 0     # 跑得太慢
          elif (x > s['成绩'].iloc[i - 1]) and (x <= s['成绩'].iloc[i]):
              return s['分数'].iloc[i]
       
       
  data[col + '成绩'] = data[col].map(convert)   # 增加一列
   
   
  # 这里会报错 数据类型不对   我们在上面转换一下数据类型

转换 '跳远', '体前屈', '引体', '肺活量'

data.columns

score.head()

for col in ['跳远', '体前屈', '引体', '肺活量']:
  s = score['男' + col]
   
   
  def convert(x):
      for i in range(len(s)):
          if x >= s['成绩'].iloc[i]:
              return s['分数'].iloc[i]
      return 0
   
  data[col + '成绩'] = data[col].map(convert)

data.head()

班级 性别 姓名 男1000 男50米跑 跳远 体前屈 引体 肺活量 身高 体重 BMI 男1000成绩 男50米跑成绩 跳远成绩 体前屈成绩 引体成绩 肺活量成绩 0 1 男 高孜阳0611 4.13 8.88 195.0 12 1 2785 170.0 72.6 0.0 72 66 60 74 0 62 1 1 男 郝少杰1013 4.16 7.70 225.0 11 7 3133 174.0 52.7 0.0 70 78 74 74 60 68 2 1 男 郝梓烨0619 4.09 8.45 218.0 14 1 3901 169.0 46.5 0.0 74 70 70 78 0 80 3 1 男 何弘源1010 4.21 8.05 206.0 13 1 4946 183.0 79.7 0.0 68 74 64 76 0 100 4 1 男 刘硕鹏1212 3.44 7.52 210.0 13 9 3538 171.0 54.7 0.0 85 78 66 76 68 74

data.columns

cols = ['班级', '性别', '姓名', '男1000','男1000成绩', '男50米跑', '男50米跑成绩', '跳远', '跳远成绩','体前屈', '体前屈成绩', '引体','引体成绩', '肺活量', '肺活量成绩', '身高', '体重', 'BMI', ]

cols = ['班级', '性别', '姓名', '男1000','男1000成绩', '男50米跑', '男50米跑成绩', '跳远', '跳远成绩','体前屈',
'体前屈成绩', '引体','引体成绩', '肺活量', '肺活量成绩', '身高',
      '体重', 'BMI', ]

# 根据索引的顺序去DataFrame中取值
data[cols]

计算体重

h = data['身高']
h[:50]

def convert(x):
  if x >100:
      return x/100
  return x
data['身高'] = data['身高'].map(convert)

data['BMI'] = (data['体重'] / data['身高']**2).round(1) # 保留1位小数

data.head()

班级 性别 姓名 男1000 男50米跑 跳远 体前屈 引体 肺活量 身高 体重 BMI 男1000成绩 男50米跑成绩 跳远成绩 体前屈成绩 引体成绩 肺活量成绩

0 1 男 高孜阳0611 4.13 8.88 195.0 12 1 2785 1.70 72.6 25.12 72 66 60 74 0 62 1 1 男 郝少杰1013 4.16 7.70 225.0 11 7 3133 1.74 52.7 17.41 70 78 74 74 60 68 2 1 男 郝梓烨0619 4.09 8.45 218.0 14 1 3901 1.69 46.5 16.28 74 70 70 78 0 80 3 1 男 何弘源1010 4.21 8.05 206.0 13 1 4946 1.83 79.7 23.80 68 74 64 76 0 100 4 1 男 刘硕鹏1212 3.44 7.52 210.0 13 9 3538 1.71 54.7 18.71 85 78 66 76 68 74 … … … … … … … … … … … … … … … … … … … 488 17 男 张乔楠0311 4.23 8.27 208.0 10 0 4647 1.76 69.5 22.44 68 72 66 72 0 100 489 17 男 郭泽森0333 5.19 9.55 210.0 15 6 7042 1.77 76.0 24.26 40 50 66 80 50 100 490 17 男 陈子龙061X 3.25 7.50 252.0 13 13 5755 1.81 65.0 19.84 100 80 90 76 85 100 491 17 男 王丹龙0636 4.39 7.81 208.0 14 11 5688 1.72 51.7 17.48 62 76 66 78 76 100 492 17 男 王玉涵0636 0.00 0.00 0.0 0 0 0 0.00 0.0 NaN 0 0 0 50 0 0

def convert_bmi(x):
  if x >= 26.4:
      return 60
  elif (x <= 16.4) or (x > 23.3 and x < 26.3):       return 80   elif x >= 16.5 and x <= 23.2:
      return 100
  return 0
data['BMI_score'] = data['BMI'].map(convert_bmi)

班级

性别

姓名

男1000

男50米跑

跳远

体前屈

引体

肺活量

身高

体重

BMI

男1000成绩

男50米跑成绩

跳远成绩

体前屈成绩

引体成绩

肺活量成绩

BMI_score

 

0

1

高孜阳0611

4.13

8.88

195.0

12

1

2785

1.70

72.6

25.12

72

66

60

74

0

62

80

1

1

郝少杰1013

4.16

7.70

225.0

11

7

3133

1.74

52.7

17.41

70

78

74

74

60

68

100

2

1

郝梓烨0619

4.09

8.45

218.0

14

1

3901

1.69

46.5

16.28

74

70

70

78

0

80

80

3

1

何弘源1010

4.21

8.05

206.0

13

1

4946

1.83

79.7

23.80

68

74

64

76

0

100

80

4

1

刘硕鹏1212

3.44

7.52

210.0

13

9

3538

1.71

54.7

18.71

85

78

66

76

68

74

100

5

1

刘运硕0314

3.49

7.94

190.0

20

7

3970

1.75

66.4

21.68

80

74

50

90

60

80

100

6

1

吕晓瑶0314

3.54

7.75

186.0

11

7

3710

1.73

53.9

18.01

80

76

40

74

60

78

100

7

1

米孜聪0636

4.03

8.06

195.0

3

1

5578

1.78

83.1

26.23

76

74

60

62

0

100

80

8

1

聂浩然2719

4.01

7.75

220.0

15

10

3821

1.75

66.5

21.71

76

76

72

80

72

80

100

9

1

牛苗嘉1211

4.12

7.38

245.0

17

11

4423

1.67

53.9

19.33

72

85

85

80

76

95

100

10

1

牛砚哲2813

4.00

7.82

219.0

13

11

4031

1.73

57.4

19.18

78

76

72

76

76

80

100

11

1

齐子涵185x

4.13

7.37

228.0

9

15

4354

1.63

54.6

20.55

72

85

76

70

95

90

100

12

1

乔一甲0616

3.45

7.66

202.0

7

3

2238

1.79

61.1

19.07

85

78

62

68

20

30

100

13

1

任晓波0311

3.46

7.66

245.0

3

7

4811

1.77

63.9

20.40

85

78

85

62

60

100

100

14

1

戎小龙2633

0.00

0.00

0.0

0

0

0

0.00

0.0

NaN

0

0

0

50

0

0

0

15

1

桑淳熙0616

3.57

7.60

192.0

7

5

4147

1.74

59.2

19.55

78

78

50

68

40

85

100

16

1

田晓龙2411

4.18

8.14

210.0

8

4

4241

1.79

61.9

19.32

70

72

66

70

30

85

100

17

1

田玉聪2716

3.32

7.20

255.0

22

12

5324

1.83

63.4

18.93

95

95

90

95

80

100

100

18

1

王晨宇0613

3.56

8.15

207.0

13

12

4363

1.73

60.5

20.21

78

72

64

76

80

90

100

19

1

王家梁0630

3.47

8.15

202.0

13

16

5364

1.74

56.0

18.50

85

72

62

76

100

100

100

20

1

王乐天3331

3.53

7.85

210.0

3

7

3445

1.77

56.9

18.16

80

76

66

62

60

74

100

21

1

王一钊1213

3.57

7.85

220.0

9

2

5670

1.77

55.5

17.72

78

76

72

70

10

100

100

22

1

王子天0634

3.42

7.23

212.0

12

15

5709

1.85

72.3

21.12

85

90

68

74

95

100

100

23

1

王子鑫0012

4.03

7.68

218.0

15

3

4780

1.77

83.7

26.72

76

78

70

80

20

100

60

24

1

未晓锟1214

4.14

8.30

206.0

15

1

3358

1.73

46.6

15.57

72

72

64

80

0

72

80

25

1

张国瑞033x

4.04

8.15

205.0

9

5

3494

1.69

48.3

16.91

76

72

64

70

40

74

100

26

1

张皓天0632

4.04

7.55

190.0

12

5

3286

1.69

50.1

17.54

76

78

50

74

40

70

100

27

1

张泽地0310

4.02

7.55

240.0

5

12

4483

1.71

58.4

19.97

76

78

80

64

80

95

100

28

1

张智贤0318

3.57

7.89

220.0

9

11

4254

1.66

54.8

19.89

78

76

72

70

76

85

100

29

1

赵博翰101x

4.16

8.19

212.0

27

7

3498

1.69

68.0

23.81

70

72

68

100

60

74

80

30

1

赵泽凯0311

4.01

7.89

213.0

5

11

4322

1.74

55.9

18.46

76

76

68

64

76

90

100

31

1

赵泽宇0616

4.08

8.21

208.0

19

20

3917

1.66

51.9

18.83

74

72

66

85

100

80

100

32

1

左晶川1217

4.06

8.71

206.0

11

4

3970

1.72

47.8

16.16

74

66

64

74

30

80

80

34

2

贾和0633

4.22

7.97

215.0

9

9

3865

1.75

58.7

19.17

68

74

70

70

68

80

100

35

2

李森0636

0.00

0.00

0.0

0

0

0

0.00

0.0

NaN

0

0

0

50

0

0

0

36

2

李一帆1812

4.46

8.79

172.0

7

1

4750

1.74

88.6

29.26

50

66

10

68

0

100

60

37

2

李子阳0618

4.01

7.37

210.0

2

7

4714

1.82

62.5

18.87

76

85

66

60

60

100

100

38

2

吕星繁0312

0.00

0.00

0.0

0

0

0

0.00

0.0

NaN

0

0

0

50

0

0

0

39

2

赵凌云105x

4.13

7.77

208.0

8

7

4327

1.73

56.0

18.71

72

76

66

70

60

90

100

40

2

赵鹏悦2612

4.27

8.80

185.0

10

5

4745

1.64

74.8

27.81

66

66

40

72

40

100

60

42

3

宫诚博0612

3.43

6.89

276.0

16

12

5212

1.84

73.1

21.59

85

100

100

80

80

100

100

43

3

郭亚浩181X

4.04

7.25

240.0

13

8

4756

1.76

72.0

23.24

76

90

80

76

64

100

0

44

3

郝晓辰0013

3.38

7.36

246.0

22

11

4433

1.84

62.5

18.46

90

85

85

95

76

95

100

45

3

李国玺2310

4.19

8.17

220.0

18

1

4438

1.74

72.2

23.85

70

72

72

85

0

95

80

46

3

李一帆1218

4.08

7.80

227.0

15

1

6033

1.77

85.6

27.32

74

76

76

80

0

100

60

47

3

刘凡1218

4.09

8.06

208.0

10

2

4106

1.70

68.7

23.77

74

74

66

72

10

85

80

48

3

刘哲垚1217

4.09

8.16

190.0

2

6

4214

1.67

60.7

21.76

74

72

50

60

50

85

100

49

3

米卓凡241X

4.05

8.16

200.0

13

9

3857

1.72

51.4

17.37

76

72

62

76

68

80

100

50

3

牛卓凡0614

4.02

8.27

228.0

14

12

3266

1.62

52.2

19.89

76

72

76

78

80

70

100

51

3

苏仕一1233

4.01

8.50

215.0

6

9

3578

1.64

49.9

18.55

76

70

70

66

68

76

100

定义需求,画图,对比分析

(data['BMI_score'].value_counts()).plot(kind = 'pie', autopct = "%0.2f%%")

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPYAAADnCAYAAAAtmKv2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxcdb3/8dd3JvuepmmSNm1Pd1poSzdkLwKidAARFWWxQUHFq4CiwnBRGxUv89MLiiCtC1wQZRWE6rDT0kKxbG0h0DWl02xd0iaZZLLN9v39caZt2maZSWbmzJz5Ph+PeaQzOTPnE8g737N8FyGlRFEUc7EYXYCiKNGngq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmpIKtKCakgq0oJqSCrSgmlGZ0AUpsaHZnFjAFGAuUAxV9vpYBuUAGkB76eujfAaAj9PD0+XcLUAfsBlzAbpfDdiBuP5ASEaEW5Utumt1pAU4A5oYeJwEzAY3YH5F1AruATcCG0GOjy2Frj/F+lSGoYCcZze60AvOAxaHHWUCRoUUdTQK1wHvA68BLLodtt6EVpSAV7CSg2Z3jgMuAC4EzgAJjK4rYDuDl0GO1y2HrMLge01PBTlCa3TkJ+GLo8SlAGFtR1PjQA/534DmXw9ZlcD2mpIKdQDS7sxi4BlgKnGxsNXHRCTwLPAq87HLY/AbXYxoq2AlAsztPA64HLgeyDC7HKM3AA8Byl8NWZ3QxyU4F2yCa3ZkNVKEHeq7B5SSSALASuNvlsL1pdDHJSgU7zjS7Mwf4DvBj9PvJysDeAX4NPONy2NQvagRUsONEszvzgO8CPwRKDS4n2WwAfuJy2F4wupBkoYIdY5rdmQHcBNwKlBhcTrJ7A7jN5bCtM7qQRKeCHUOa3XkxcDcw1ehaTOZ54Ecuh22L0YUkKhXsGNDszunA79A7lCix4QV+A9zhcth6jC4m0SR9sIUQDwIXAfullCeFXhsFPIHeX9oFXC6lbBVCCOAeYAnQBVwjpdwQrVpCV7qrgR+gD6hQYm8n8F8uh+1lowtJJGYYtvkQ8LljXrMDr0kppwGvhZ6D3oJOCz2+BSyPVhGa3XkKsBG4BRXqeJoCvKTZnY9pdqe6yxCS9C02gBBCA/7dp8XeBpwjpdwjhKgAXpdSzhBC/DH078eO3W64+9bsznTgZ8BtgHVkP4kyQgeAa1wOm9PoQoxmhha7P2WHwhr6Oib0+jigvs92DaHXhkWzO08E1gM/QYU6EYwG/q3Znfdodmem0cUYyazBHkh/AymGdcii2Z3XAe8D80dUkRILNwL/CV3ETElmDfa+0CE4oa/7Q683AOP7bFcJNEXywZrdmaHZnSuAPwMp3SokuHnABs3u/JrRhRjBrMFeid4Pm9DX5/q8vlToTgXckZxfa3ZnBbAa+HY0i1ViJhf4q2Z3/jo000zKSPqLZ0KIx4Bz0M+v9gHL0IcCPglMQJ+n68tSypbQ7a770K+idwFfl1K+F85+QiOwnkafM0xJPs8CV7sctk6jC4mHpA92PGh251eBh9En/FOS10bgYpfD1mh0IbGWUocnw6HZnTehTwSgQp385gHvaHbnPKMLiTUV7EFoducd6F1DzTItkaJPx7xaszs/ZXQhsaQOxfuh2Z0CPdA3Gl2LEjPtwBKzjhRTwT5GKNR/Aq4zuhYl5jzARS6HbY3RhUSbOhQ/3l2oUKeKPOB5ze48z+hCok0Fuw/N7vwp+sgsJXXkAP/S7M7TjS4kmtSheIhmd34PuNfoOhTDHAROdzls240uJBpUsAHN7rwKeAR19TvV7QJOczls+4wuZKRSPtia3XkO8Apq5VFF9z5wjsth8xhdyEikdLA1u3Mi+uJxo42uRUkoL6JfLQ8YXchwpezFs9A0Rv9EhVo53ueAXxldxEikbLCBv6B3MVSU/twSmmU2KaVksDW780fAlUbXoSQ0ATys2Z2a0YUMR8qdY4f6CK9DTWWkhOd94AyXw9ZrdCGRSKkWO7Ru1iOoUCvhWwD81ugiIpVSwUbvLjrN6CKUpPMdze5cYnQRkUiZQ3HN7rwQfWkYRRmOJuBEl8PWZnQh4UiJFluzO0vQF1VXlOEaiz6UNymkRLDRF8ZTc5UpI1Wl2Z2fMbqIcJj+UDw0audNVD9wJTo+AWa7HLYuowsZjKlb7NCUs/ehQq1Ez2T05ZwSmqmDDXwT1btMib6bNbtz2EtDxYNpg63ZnaNI8v6+SsLKAe4wuojBmPYcW7M77wO+G4vP9h1soHnl/zv83N+2l6IzrybY3U5X7dsgBNacIkqWfJ+0/JKj3tuz+0NaVv35qM8qveQWcqafRvfuD2hb/SAy4COjfColF96EsFjp3LYO9xt/x5KdR+llP8GaXYCvdQ9ta/9K6edvjcWPqAwtCMx3OWwfGF1If0wZbM3uHA/UEoe5wGUwQMP9VVR87W4sWXlYMnMAaH9vJb6DdZR89nsDvjfQ3UHTn77JuP96CJGWQePyb1D21V+RPmocbW/8DWvBGPLnXsDeR37EmMt/QeeWtciAj4IFF9O88tcUnXkV6aMS+ojQ7F51OWwJeZXcrIfitxGnCf57dn9AelEFaYVjDocaQPp6GOqaXde2dWRNXoAlPYtgdwfCmn44qFnayXRtD82MKyzIgA/p70VYrPTUf4Q1t1iF2njna3bn54wuoj+mC7Zmd1YC18Zrf51b1pIz8+zDz1vX/pWG+6+hc/PrFJ119ZDvzZ25GABLdgEy6Kd3zw5AD32g/QAAhWdcwf4nf0aPaxO5sxbjfusJCs+4IkY/kRKh240uoD9mnA4obq21DPjorn2H4sVVh18rPnspxWcvxf2fJ+l4/98UnXVVv+/1e1rwNbvInqQvry2EoPSSW2hd9WdkwEeWNh8s+liV7EnzyJ6kX9z31LxG9pSF+A820PLOM1iy8ig+/1tY0rNi/NMqAzhTsztPdzlsbxldSF+marFDtyDi1lp3f/I+GWVTsOYWH/e93FnnHDmU7kfX1jfImX4awnrkb2vmuJmUX/VrKpb+lqzxJ5JePPao9wR9PXg+eo38eTZa1z5MyZLvk1E+lc6PX4/az6QMS8JdwTRVsNHnBI/bYvSdm9eQ2+cw3NdyZBHHrtq3SR9VOch7jxyGHxLo1McXSL+P9rf/Qd68C4/6fvvbT1Ow8BKENQ3p8+ovCgvSn1RDhc3oYs3unGl0EX2Z5lBcszuzgK/Ha39BXw89rk2UfO7IVe+2NQ/ja2kAYSGtoJRRn9XvtvXu2YFn0wuUXKgvBeZ37yPQ0UzmhJOO+sz2d56hq/YdQJJ/8hKyJ849/D1/x0G8e2spOlM/tC845QvsfeRHWLJyKb3sJzH+aZUhCODHwDeMLuQQ09zu0uzOpehrWCuKEbzAeJfDtt/oQsBch+LfMboAJaVlAIPfBokjUwRbsztPBk41ug4l5cXtVHAopgg2qrVWEsNJmt250OgiwATB1uzODOCrRtehKCEJ0WonfbCBC4ACo4tQlJArQndoDGWGYH/J6AIUpY9i4MIht4qxpA62ZnemA5cYXYeiHMPwpYGSOtjAueh/IRUlkdg0u9PQ6biSPdjqMFxJRGOAU4wsINmDbTO6AEUZwEVG7jxpg63ZnbNQc4UriSs5gi2EKBNCPCCEeCH0fJYQIm5DJPtxroH7VpShnKzZnWVG7TySFvsh4CX0pU4AtgPfj3ZBETjHwH0rSjgM6+YcSbBHSymfRJ+dESmlHwjEpKrwnGXgvhUlHKcZteNIgt0phCgBJIAQ4lTAHZOqhqDZndPRrzwqSiJLimDfDKwEpggh1gF/BW6ISVVD+5RB+1WUSCzU7E5DJjMJa6dCCAuQBSwGZqDPGLFNSumLYW2DmW3QfhUlEjnAHGBDvHccVostpQwCd0kp/VLKj6WUHxkYaoCTht5EURLCIiN2Gsmh+MtCiC8KIRJh5UoVbCVZzDBip5Ec/98M5AIBIUQ3+uG4lFLGdcikZncWAuPjuU9FGYFpRuw07GBLKfNjWUgEVGutJJPpRuw0oi6lQohLhBD/G3oY1WXuBIP2qyjDMUmzO63x3mkkXUodwE3A5tDjptBr8aZWolOSSTowKd47jeQcewlwcugKOUKIh4GNgD0WhQ1CDfxQks1U9GWd4ybS0V1Fff5dGM1CIqCCrSSbuPeSjKTFvhPYKIRYjX5F/Gz0lS3jTQVbSTYl8d5hJFfFHxNCvI5+w10At0op98aqsEGMHXoTRUkoo+K9w0gunn0B6JJSrpRSPgf0CCEujV1pAzJsjKuiDFPcW+xIzrGXSSkPj+aSUrYBy6Jf0sBCiwOkx3OfihIFCR3s/raN98iVjDjvT1GiIXEPxYH3hBB3CyGmCCEmCyF+C7wfq8IGELdF7RUlinLivcNIgn0D+hrATwBPAT3Ad2NR1CBUsJVkFPeeZ5FcFe8k1BlFCGEFckOvxZM6FFeSUdxnAw472EKIR4Hr0ec5ex8oFELcLaX8TayK64dqsWNktqjduiB9RW1wT3rOyTslE5uDY7J8wQr0W5vKCASF1YMjvlPgR3Lxa5aUsl0IcRXwPHAresDjGWwjJ080tUliX+cyS5Ptxnmj1y47M2cxWCjoFAdP/kTuXLhDdk1vlLnFHqaIOC+p1BsMsrS+Dq+U+KXkgvx8bhhdetQ2j7e18lhrGxYBuRYL1WXlTM3MpNHn5aJdu9Ay9AO9uVnZVJeX4w0G+V5jI3v9Pq4oKuaKYv1HWrZ3D18pKmZWVnQXy7TIQNxX34wk2OlCiHTgUuA+KaVPCCFjVNdAPHHeX8qoEC09AsS9+w8s/kNR4RsrigpObc8VJWtni5K1fSaiqmyWrgW1smnezqBP28fobC/TRAxPkTKE4MHxE8i1WPBJydV1uzk7N4+52dmHt7kov4CvFunhXOXp4Nf79/On8fqQ/fHp6fxTO3oMxptdnczKymLF6Eq+uNvFFcXFbO3pIQhRD3WIPxYfOphIgv1HwAV8AKwVQkwE2mNR1CBUsGOkQhw8fDT03Tb3WdO93g03jxk9BSGOGhPQUCq0hlKhPXeaftqY5pe9Mxrkx4t2yAOzXTKtooXKtCATo1WXEILc0KQ9/lCrfaw865FrU91BOeTJQxqCXhk8Km33HjjAsvKY9X2K+zRikVw8+z3w+0PPhRB1wKf7PK+SUj4c3fKO04U+/bE674uyctEa7Pv8M13d859s2rvzirHlHQEhKgd6nz9NZH6siRM/1o68lt8lW+Z+Ij9ZuEN6TmiQeUUeJltGcC83ICVf2u2izuvlyuLio1rrQx5tbeXh1hZ8UvLg+AmHX2/0+bjMtYs8i4UbR5eyMCeH03Nz+Vd7O1/d7eLaUaNY5elgVlYWY9Ji1vcp7sEWsp+/gMP6ICE2SCnnR+XDBqHZnZ0YcF/Q7J7OWLZ2gWXH2ce+3my1NF9cOba502KZNZLPH3dA1s2vlfXza4P+Sfoh/FQR4cXQ9kCAGxsbub2sjGmZ/b/13+1u1nV2cmfFWLzBIF1SUmS18nFPDzc0NrBSm3RUC++Tkm811HPfuEruO9DMHp+fSwoLODcvqhMGPTpz65arovmBQ4lmz7F4taIeVLCjrpiOfpur0kCw9PW6xrxLx1Wsb0xPG/aSNY2jxYTG0WLCv04NHcIHpHd6A5sX7Qg2z9kl08pbGJceRBvsMwqsVhbl5PBGp2fAYC/JL+AX+/YBkGGxHD75PzEri/Hp6bh8Xk6yHmnxH29r5fMFhXzQ3U26ENw1dixX1u2OdrD3h7uhEOJzwD3o977/IqUc1mQm0Qx2vC6ktaBWAYm6AtE1YOuZJWX28w1Np3y7vHTN+uzsxdHYn98qMjZPZNbmiUdaz7wu2Tp3l9y5cIf0nFAvc4s9TG7z+0vShKDAaqUnGOQ/XZ1cN+rortcur/fwle81nR4mpuv/bvH7KbRasQpBvdfLbp+PyvQj1/ncgQCvezz8pXI8qzweBAIB9Aaj/qu8L5yNQv1D/gB8BmgA3hVCrJRSbo50h8nYYteh5j2Luhx68gb7vgUsf97bvPiu4qK1DxXmn4H+SxhVnhxRvO5EsXDdiUdey93k3bPjoYaCjF5JeoC0i/MLrOfk5aXde6CZE7OyODcvn0dbW/lPVydpQlBosfI/FfqQ/fe6u7j3wAHShMACLCsro6jPYfjygwe4vmQ0QgjOzM3lsbZWPu/axVeKioiycFvsU4BaKeUnAEKIx4HPo09FFpFoBntdFD9rMHVx2k9KycAf1rHnD1vbzp7m8757++iSmQgx6B+DaOg8Oadi7O+OTPS5LiB9zY1sXrR9zIGpLmn1tTD2trIyTfTTsFyQX8AF+QPPjm0fc+QqeKbFwl/6XHSLsqYwtxsH1Pd53sAwl7MaMthCiJsH+76U8u7Q1+8Np4BhUMGOASvBsJupSzxdizSff9vXKsoKgkLEdUabgFWkb5nArC0T+hzCd8u2OfohfMfMeplb3MEkC4yOZ11D2B3mdv0d9Q7rvCCcFjtR5hM/JNz/SEqYsuntEiKyC5Jzer0zXqxv2nNJZcW2HovFkNUuDvFki6K3ZokFb/W5bl/eIusX1Mr6BbXSN2mvHJXTyzShrz9nhHB/Zxs4ejGMSsJv7Y8Stdtd8aLZnecAq42uw0zGi/1Nb2R+f1hTTnUK4bmksmLL/rQ0Q9aoCpc1IH3TmqhduD3YPNclLWMPMjYtwKT+DuGjrHnm1i1hXewVQqQB24HzgEbgXeBKKeXHke40nEPx3w/2fSnljZHudIQ+ifP+TK+UtnaGOZdcrpR5L9c3zb+momztpqzM4+6DJ4qAVaRvHc/MreOtM/8Wei23W7rnuGTtwu3SM7NBZo/qYJJFUjroB0VuV7gbSin9QojvAS+h3+56cDihhjBabCGEF/gIeBL9sOCov3Bx6G12HM3ubCHOgxHMbInl7Q33Z9wz4s5FvywpXvNkft5Z6MsuJ6WyFtmwoFbWz98pvZP3yOJc/RD++K5u4Xtw5tYt10atwDCFc45dAXwZ+Ap6Z/YngKellK2xLGwIm+jTnVUZmQpxsDcan/PTg62LZ3h9639ZUjwHIZKyE9G+UaLy+VNE5fOn6M8tQemf1siWhTuCB+bukmLsQSrSA0yO4BA+7mtjQxjBllIeBFYAK4QQ44ArgI+FELdKKR+JdYED2IAKdtRUiJao9WW+vMNz6iSfb/O15WNKpRDRPqyNu6BFpG0bz8xt4638PfRaTo90z3HJTxZul+6Z9TKnZPBD+MQM9iFCiPnoof4M8ALxn++sr40G7tt0ykVLVK+gLurpneVs2NNw6biKnV6LmBLNz04EXVmicP0JYt76Pt2kylpl47ydsm7BDumdslcW5/YcHs76gRE1hnPx7OfARcAW4HHgNill3MeXHkMFO4pKRVvUP3O831+5ur7BfXHl2A0tVmvMBwcZbV+xGPfiQjHuxYX6c0tQ+qc28fLTt3/UZUQ94bTYP0W/Ej039PgfoY+PPbTw/ZzYlTegrUAnkGvAvk2nhPaYjFcsCMrCV+saZ185tvzNrZkZZw61fe+eXurvP9LxytvsZcwXxjD6s0f6mgQ6AzQ80IB3vxdLuoVx144jqzJr0PfufXIvHR92kD0hm8pv6SNQW9e1EugMMPqC2PRjCVpE2vZKXDH58DCEE+y4LwE6FJfDFtTszrXAhUbXYgYFojNmc8mlQ/pTTXvPvK205PV/5+YsJtQq9CezIpOpv5wKgAxKtn1/GwULju4S2vyvZrInZDPxxon0NvXS9EgTk26dNOB7A10Bumq7mHbHNOpX1NNT30NGWQZtb7ah/VCL1Y99yJux3sFAhrwtIaXcfewDvbWsC/3bKK8YuG9TyaU35lew72w+eM6PW9r+g5RhXYH3bPaQMSaDjNFHz7rU09RD7iz9QC1zbCbeA178bv/A7xUg/RIpJdInEVbBgRcOUPKZEkRazMctJW6whRCnCiFeF0I8I4SYJ4T4CP2+9r7Q2FGjqGBHSSbegUdKRNHS9o7Tl+9r3iakbBlqW/fbbgpPPX6l5qwJWbS/r8/I1fVJF76DPnytvgHfa822UrCwgJ0/20n66HQsORa6P+mmYH7Mf+S6mqoaw8Y1hNOR4D7gf4DHgFXAdVLKcvRldO+MYW2DcjlsHwF7jNq/mVgJxm2t8zO7e+Y827inI11K10DbBP1BOjZ2ULjo+LJKbaUEOgPU/rSWg68cJHti9lG/xf29t3RJKVN/OZWKKyrY/8x+xlw2hpY1LdT9oY79K8OeAyFSa2L1weEIJ9hpUsqXpZRPAXullOsBpJRbY1taWF41uoBkl4GvVwhiPvyyr8k+/8TX6hoLCgKBD/v7vudDD1kTs0grPP4SkDXbSuV1lUz95VQqv1WJv91PRmlGWO/t3t0NQGZ5Jm3r2pjw3Qn0NvTSuzcq/XOO9Y9YfGi4wgl230nuuo/5ntEjSF42eP9Jr4R2Q3oQFgeDo1bXNc6Y7PUdN47fvd5N0an9jyINdAYI+vVfydY1reTOyMWabQ3rvfuf2c+YL4xB+uWR32oLBL3BfrcfgVbgxWh/aCTCCfZcIUS7EKIDmBP696Hns4d6c4w5MWAGSDMZI9o6jNp3BmQ+27jn9HM7u14/9FqwN4jnY89RV8NbVrXQsko/Le/d00vt7bVst2/HU+Oh4qojw8H7e+8h7e+3kz0pm/TidKy5VrKnZrPjJzsAyJ4wkq7g/Xq6pqrGG+0PjUTSDds8lmZ3Po+67TVsF1je3finjN/OM7qOFUUFb/6hqPBT6ItSJLvzaqpqVhlZQNKOwunjCaMLSGbloqXH6BoArm9rP/O3+w98hJRuo2sZoSbgdaOLMEOwn+H4c38lTBWixejuwYed39U976mmvQesUjYYXcsIPFlTVRP1k/ZIJX2wXQ5bB/Cc0XUkq3LRklALHZ7g9U15tb4xMzcYHNYEAwngUaMLABMEO+SvRheQrMpoTbjlkkbrixRMrvT51xtdS4Rqa6pq3jW6CDBPsF9CTZk0LCWiPZpTUEdNlpTZzoamU07r6ja0o0eEHjO6gENMEWyXwxZE7yGnRKgwhgNARsoClj/ta1789bb2tUiZUKcMA1DBjoEHUcvsRiyXnqjfxI22m1vbzr6z+eBGpDTsnnsYXq2pqtlidBGHmCbYLofNDTxkdB3JJgtvXLuTDtdFnV0LH23at8ciZaKODxjW4nmxYppgh9yL8d1ck0oagaSZ7XW21zv9pfomkR0MJsI4hb7eramqec3oIvoyVbBdDtt29G6mShisBPxCEJchm9FSHgiUr65rrCzz+xPi6nNIQrXWYLJghyxDtdphGUV79Cc7i4NcKfNeqm+aP7+nJxGumG8F/jnURkKIIiHEP4QQW4UQW4QQpwkhRgkhXhFC7Ah9jdrRk+mC7XLYNgBPG11HMigV7qTtvmkF68N79i/+anvHGqQ0sqdXdU1VTTgNyT3Ai1LKE9DnDtwC2IHXpJTTgNdCz6PCdMEO+RmQDLdHDFUuWjqNrmGkbj/YunjZgZZ3kdKI2UA3oa+QMyghRAH6xCQPAEgpvVLKNvS1rw+tpPMwcGm0CjNlsF0O2xbgb0NumOLKRYshU+NG25c8nZ/6v737XRYpYzYdygB+EmZrPRloBv5PCLFRCPEXIUQuUCZDV/lDX8NavC8cpgx2SDVg6JjYRBfNFUCMtrCnd9a/G/Z4M4PB2jjtcl1NVU24F2rTgPnAcinlPPTJQKN22N0f0wbb5bC50M9rlAGU02L4KKRoGu/3V66qbywt8QdivUqNBG6LYPsGoEFK+Xbo+T/Qg75PCFEBEPoatSMO0wY75OeAYTNFJroy0f+sSN94rpsxv+ngpPuP78j3v2/1In7ezoGu/v8m3PJKDyfe72HmHzzc+EIPhybyeKzGx+zlHuYs9/C5v3Uefv+tr/QwZ7mHpf88MvL2kQ+83LN+ePOQFQRl4av1jXNn9nrfGNYHhOdPNVU1YX++lHIvUC+EmBF66TxgM7ASqAq9VkUURymaOtguh60TuMHoOhJViWi39vf6NSen8+LVx081Xu8O8sonfiYU9j8g7K16P+vqA3x4fS4ffSeXd5sCrNkdwB+U3PRiD6urcvjwO3nMKbNy3zte3D2StxoCfPidPAJSUrMvQLdP8tAHPv5rUUa/+whHGqQ92bT3rEs6PGuI/hRBu4EfD+N9NwB/F0J8CJyMPvOvA/iMEGIH+pp4UbsfbupgA7gctpWo8dr9KhKeftNz9sQ0RmUfH94fvNTDr8/PGnD9WAH0+CXeAPQGwBeQlOUKpNSPXTu9IKWkvVcyNt+CRYA3oE/m3+2DdCv85i0vN56SQbp15KNJf3WgZfEt+iIF0Zwl5rqaqpqI+6xLKTdJKRdKKedIKS+VUrZKKQ9KKc+TUk4LfR1yvvVwmT7YITegX7BQ+sinO+wVQFZu8zEu38Lc8n4beQBOG5/Gp7U0Ku7qoOKuDj47JY2ZpVbSrYLltixmL/cw9m4Pm5uDXDsvnfxMwRdnpjPvj51MKrJQmCl4tynA50+I3rRnX2vvOH3FvuYdQl8OeqT+XFNVkxRTXqdEsF0OWz1wu9F1JJosvGEtatjlk/zqjV5+8enBR3jWtgTZciBIw835NN6czypXgLW7/fgCkuXvedn47Tyabs5jTpmFO9/Ub1jcckYmm67P467PZvHT1b384pxM/rLBy+VPdXHH2ujM931Gd8/s5xr3eNKl3DWCj6kDfhiVguIgJYId8nv0CRmUkDQCYa0AsrMlyK5WydwVHrTfddDQLpn/x072eo6+gPbPLT5OHWclL0OQlyG4cGoa6xsCbNqrbzdllAUhBJefmM5b9Uf3H9q4R38+vcTCXz/w8eSXc/hof4AdB6PTz2iSzz9xVV1jUWEgMNz1qr85nENwo6RMsF0Om0S/8hjvTgwJSRAMCmT/M+sfY3aZlf0/zsf1ff1RWSDY8O1cyvOO/vWZUGhhzW4//qDEF5Cs2e1n5mgL4woEm5uDNHfqAX9lpzL3kbUAAAdQSURBVP56Xz9drR8R+IIQCF3usgjoiuKd9qJgsHhVXePMKf0sUjCEB2uqapJqcYqUCTaAy2Hbhx7ulB8kUoSnTYj+//9f8XQXpz3QybaDQSrv7uCBDQP383mvKcB1K/VbVV+alcaUYguzl3cyd0Unc8usXDwjnbH5FpYtzuTsh7qYs9zDpn1B/vusI9ftnt3qY9FYK2PzLRRlCU6rtDJ7uQchGPScfjgyIOPZxj1nnN9nkYIhNAA3R7WIOEj6BQOGQ7M77wZ+YHQdRpoh6na9lGlPuLXP4+mPRQVv3jf4IgUSWFJTVWPocj3DkVItdh924D2jizDSGNGW8tNIfbut/czfDb5Iwc+SMdSQosF2OWxe9JE0TUbXYpQKcVAtsgCc19U97x+New+mSVl/zLcer6mqucOQoqIgJYMN4HLYGoFLAFOMcIpUBS1qgEzIDJ9v8iv1jVl9Fil4D/iGkTWNVMoGG8DlsL0PLCUFL6Yl2gogRju0SME0r/dF4NKaqpqkPqJJ6WADuBy2p9EnZkgpAw0ASWVZUvqeadx7W01VTaPRtYxUygcbwOWw3YE+L3nKGC3c6v/90bzAZVS7NxldSDSo/7lHfJMEWVAtHorpfwBIitI7L1W7E2oK4ZFQwQ4JLRO0FH0QvOnli64so2tIIDdT7X7c6CKiSQW7D5fDFgCuBP5ldC2xlp0kK4DEWAD4FtXu3xldSLSpYB/D5bD5gC8DSdkxIVzp+JNqoYAY6AUup9r9Z6MLiQUV7H64HLZe9KlhnzC6llgRyKRZ2icGOoAlVLufMbqQWFHBHkCod9oVwN1G1xJtBXjahSAh18WOg2bg01S7VxldSCypYA/C5bBJl8P2Q/QB9qbpxDJatKfqTezdwBlUu2M9i6nhVLDD4HLY7kZvvU3RDbNMtKbiAJCPgdOpdu8wupB4UMEOk8thewI4F0jU9ZnDVo45VgCJwGrgLKrdKTPoRwU7Ai6HbR2wAHjT6FpGYqw4aIojjzD4gf8GzqfanVKnHyrYEXI5bHvQW+67SNLz7nLR4je6hjj4BDiTavedVLtNteJJOFSwh8HlsPlcDtuP0G+JRW0u6HgpE61J+QcpAn8H5lHtfnvILU1KBXsEXA7bv4CT0JdqSRqlwh3dicQSRwewlGr31VS7240uxkgq2CPkctj2uBy2z6N3RY3GpPQxV0yHGe9hv4veSj9idCGJQAU7SlwO22PALOApo2sZSoHoyja6hijqBn6Bfn96p9HFJIqUnKU01jS78wvoF9cSchbQLZnX7MgW3mlG1zFCEvgbcDvV7mPnK0t5qsWOAZfD9k9gJnALMNAMmIbJwJfsA0DWAIuodi9Voe6farFjTLM7RwPVwLchMfpn78q80isEyTjRwnbgx1S7k+pipRFUsONEsztPAH4OfAkDj5Ry6fZ8nHVtso3FPoD+324F1e5UuAc/YirYcabZnVPRF06vAgZfvjIGJoq9jWsybx4X7/0O0wFgOXAX1e6EO6VJZCrYBtHsznL0ZYauB+J2zrtIbN3yVOYvZsZrf8NUA9wD/J1qdzQXrU8ZKtgG0+zOQuAq9AnqF8R6fxdb3nr/3oz7Yr6fYfChd/S53+xjpeMhIS7mpDKXw+YG7gfu1+zOOegBvwoYHYv9VYiWRGsBtwIPAA9T7W42uhizUC12AtLszgzgIuAyYAkQtWmMlqU9vPbraS+dHa3PG6aP0OeUe5Zqd6RrVSthUC12AgpNy/QM8Ixmd6YBZwAXo681NqKOJWWi1YiRTm3Aq+hhfpFqd9KvtJHoVIudZDS7czpwNnA6cBowAxDhvv+pjOq1iyzbY91iS+B9DgUZ1lPtHvZaYUKIHwDXhT63Bvg6UAE8DowCNgBfk1KmyjjzIalgJznN7hwFnIoe8jnAdGAy9N8B5bWMH/5nimXPaVHavUSfR2zLMY/N0ZrYQAgxDn1ii1lSym4hxJPA8+inKM9IKR8XQqwAPpBSLo/GPs1AHYonOZfD1oL+i/78odc0u9OK3k99eugxESgDyjLwt6OHsRDIB/oO4ZRAD9AZenQd8283sIMjAd5GtTseq1KmAdlCCB+Qgz491bnoI+oAHkbv3aeCHaJa7FRXXZgLZKOPkuqi2p1wvxBCiJuAX6HX+DJwE7BeSjk19P3xwAtSypOMqzKxqBY71VW7D7XICUkIUYw+U80k9ItwTwEX9rNpwv1BMpIa3aUkuvOBXVLKZimlD/1uwelAkRDiUMNUCaTMDKThUMFWEl0dcKoQIkcIIYDzgM3oUwp/KbRNFfCcQfUlJHWOrSQ8IcTPga+gTye8Ef3W1ziO3O7aCFwtpew1rMgEo4KtKCakDsUVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhFSwFcWEVLAVxYRUsBXFhP4/FRksvIAQBboAAAAASUVORK5CYII=" alt="img">

(data['BMI_score'].value_counts()).plot(kind = 'bar')

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXcAAAEBCAYAAACDu+UiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARKElEQVR4nO3dfcyddX3H8fdHivhELA83rLZlZVpUXKSQe0jmH1PA8eAfxUUm/CEdwRQzSDQxm+j+UJOxYDIlMdlYykDK4kAUDY3iAyLMmA2wsFKpBamAUNu1t/KgzoxJ/e6Pc3XctPfpfXo/9HB+vF/Jybmu3/W7zvmeK3c+57p/53edk6pCktSWlw27AEnS3DPcJalBhrskNchwl6QGGe6S1KAFwy4A4Mgjj6xly5YNuwxJGin33nvvz6tqbKptL4pwX7ZsGevXrx92GZI0UpL8tN82h2UkqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQtOGe5BVJ7klyf5JNST7VtV+X5NEkG7rbiq49ST6XZEuSjUlOmu8XIUl6oUEuYnoWOLWqfp3kYOD7Sb7RbfurqvryHv3PApZ3t7cBV3X3kqQDZNpwr96vefy6Wz24u+3rFz5WAtd3+92VZGGSRVW1fdbV7odll339QD7djD12xbuHXYKkBg005p7koCQbgJ3AbVV1d7fp8m7o5cokh3Rti4EnJu2+tWvb8zFXJ1mfZP3ExMQsXoIkaU8DhXtV7aqqFcAS4OQkfwh8DHgT8EfA4cBHu+6Z6iGmeMw1VTVeVeNjY1N+740kaYb2a7ZMVT0N3AmcWVXbq+dZ4PPAyV23rcDSSbstAbbNQa2SpAENMltmLMnCbvmVwOnAg0kWdW0BzgEe6HZZB1zQzZo5BXjmQI+3S9JL3SCzZRYBa5McRO/N4Kaq+lqS7yYZozcMswH4YNf/VuBsYAvwG+DCuS9bkrQvg8yW2QicOEX7qX36F3DJ7EuTJM2UV6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB04Z7klckuSfJ/Uk2JflU135skruTPJzki0le3rUf0q1v6bYvm9+XIEna0yBn7s8Cp1bVCcAK4MwkpwCfBq6squXAU8BFXf+LgKeq6g3AlV0/SdIBNG24V8+vu9WDu1sBpwJf7trXAud0yyu7dbrtpyXJnFUsSZrWQGPuSQ5KsgHYCdwG/AR4uqqe67psBRZ3y4uBJwC67c8AR0zxmKuTrE+yfmJiYnavQpL0AgOFe1XtqqoVwBLgZODNU3Xr7qc6S6+9GqrWVNV4VY2PjY0NWq8kaQD7NVumqp4G7gROARYmWdBtWgJs65a3AksBuu2vBZ6ci2IlSYMZZLbMWJKF3fIrgdOBzcAdwHu7bquAW7rldd063fbvVtVeZ+6SpPmzYPouLALWJjmI3pvBTVX1tSQ/Am5M8rfAfwLXdP2vAf4lyRZ6Z+znzUPdkqR9mDbcq2ojcOIU7Y/QG3/fs/1/gHPnpDpJ0ox4haokNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSg6YN9yRLk9yRZHOSTUk+1LV/MsnPkmzobmdP2udjSbYkeSjJGfP5AiRJe1swQJ/ngI9U1X1JDgXuTXJbt+3Kqvr7yZ2THA+cB7wFeB3wnSTHVdWuuSxcktTftGfuVbW9qu7rln8FbAYW72OXlcCNVfVsVT0KbAFOnotiJUmD2a8x9yTLgBOBu7umS5NsTHJtksO6tsXAE5N228oUbwZJVidZn2T9xMTEfhcuSepv4HBP8hrgZuDDVfVL4Crg9cAKYDvwmd1dp9i99mqoWlNV41U1PjY2tt+FS5L6GyjckxxML9i/UFVfAaiqHVW1q6p+B1zN80MvW4Glk3ZfAmybu5IlSdMZZLZMgGuAzVX12UntiyZ1ew/wQLe8DjgvySFJjgWWA/fMXcmSpOkMMlvm7cD7gR8m2dC1fRw4P8kKekMujwEXA1TVpiQ3AT+iN9PmEmfKSNKBNW24V9X3mXoc/dZ97HM5cPks6pIkzYJXqEpSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUHThnuSpUnuSLI5yaYkH+raD09yW5KHu/vDuvYk+VySLUk2Jjlpvl+EJOmFBjlzfw74SFW9GTgFuCTJ8cBlwO1VtRy4vVsHOAtY3t1WA1fNedWSpH2aNtyrantV3dct/wrYDCwGVgJru25rgXO65ZXA9dVzF7AwyaI5r1yS1Nd+jbknWQacCNwNHF1V26H3BgAc1XVbDDwxabetXduej7U6yfok6ycmJva/cklSXwOHe5LXADcDH66qX+6r6xRttVdD1ZqqGq+q8bGxsUHLkCQNYKBwT3IwvWD/QlV9pWvesXu4pbvf2bVvBZZO2n0JsG1uypUkDWKQ2TIBrgE2V9VnJ21aB6zqllcBt0xqv6CbNXMK8Mzu4RtJ0oGxYIA+bwfeD/wwyYau7ePAFcBNSS4CHgfO7bbdCpwNbAF+A1w4pxVLkqY1bbhX1feZehwd4LQp+hdwySzrkiTNgleoSlKDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQdOGe5Jrk+xM8sCktk8m+VmSDd3t7EnbPpZkS5KHkpwxX4VLkvob5Mz9OuDMKdqvrKoV3e1WgCTHA+cBb+n2+cckB81VsZKkwUwb7lX1PeDJAR9vJXBjVT1bVY8CW4CTZ1GfJGkGZjPmfmmSjd2wzWFd22LgiUl9tnZtkqQDaKbhfhXwemAFsB34TNeeKfrWVA+QZHWS9UnWT0xMzLAMSdJUZhTuVbWjqnZV1e+Aq3l+6GUrsHRS1yXAtj6PsaaqxqtqfGxsbCZlSJL6mFG4J1k0afU9wO6ZNOuA85IckuRYYDlwz+xKlCTtrwXTdUhyA/AO4MgkW4FPAO9IsoLekMtjwMUAVbUpyU3Aj4DngEuqatf8lC5J6mfacK+q86dovmYf/S8HLp9NUZKk2fEKVUlqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGTRvuSa5NsjPJA5PaDk9yW5KHu/vDuvYk+VySLUk2JjlpPouXJE1tkDP364Az92i7DLi9qpYDt3frAGcBy7vbauCquSlTkrQ/pg33qvoe8OQezSuBtd3yWuCcSe3XV89dwMIki+aqWEnSYGY65n50VW0H6O6P6toXA09M6re1a9tLktVJ1idZPzExMcMyJElTmesPVDNFW03VsarWVNV4VY2PjY3NcRmS9NI203DfsXu4pbvf2bVvBZZO6rcE2Dbz8iRJMzHTcF8HrOqWVwG3TGq/oJs1cwrwzO7hG0nSgbNgug5JbgDeARyZZCvwCeAK4KYkFwGPA+d23W8Fzga2AL8BLpyHmiVJ05g23Kvq/D6bTpuibwGXzLYoSdLseIWqJDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoGm/W0YCWHbZ14ddwkAeu+Ldwy5BelHwzF2SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoFldxJTkMeBXwC7guaoaT3I48EVgGfAY8OdV9dTsypQk7Y+5OHN/Z1WtqKrxbv0y4PaqWg7c3q1Lkg6g+RiWWQms7ZbXAufMw3NIkvZhtuFewLeT3Jtkddd2dFVtB+juj5rlc0iS9tNsvzjs7VW1LclRwG1JHhx0x+7NYDXAMcccM8syJEmTzerMvaq2dfc7ga8CJwM7kiwC6O539tl3TVWNV9X42NjYbMqQJO1hxuGe5NVJDt29DPwp8ACwDljVdVsF3DLbIiVJ+2c2wzJHA19Nsvtx/rWqvpnkB8BNSS4CHgfOnX2ZkqT9MeNwr6pHgBOmaP8FcNpsipIkzY5XqEpSgwx3SWqQv6EqDcEo/Catv0c72jxzl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KD/OIwSSNtFL6EDQ78F7F55i5JDTLcJalBhrskNchwl6QGGe6S1KB5C/ckZyZ5KMmWJJfN1/NIkvY2L+Ge5CDgH4CzgOOB85McPx/PJUna23yduZ8MbKmqR6rqf4EbgZXz9FySpD2kqub+QZP3AmdW1Qe69fcDb6uqSyf1WQ2s7lbfCDw054XMvSOBnw+7iIZ4POeOx3Jujcrx/P2qGptqw3xdoZop2l7wLlJVa4A18/T88yLJ+qoaH3YdrfB4zh2P5dxq4XjO17DMVmDppPUlwLZ5ei5J0h7mK9x/ACxPcmySlwPnAevm6bkkSXuYl2GZqnouyaXAt4CDgGuratN8PNcBNlLDSCPA4zl3PJZza+SP57x8oCpJGi6vUJWkBhnuktQgw12SGuQvMUl6yUvyJnpX0S+md03ONmBdVW0eamGz4Jm75l2SBUkuTvLNJBuT3J/kG0k+mOTgYdc3apK8NskVSR5M8ovutrlrWzjs+kZNko/S+4qUAPfQm8od4IZR/tJDZ8tMI8nRTHo3r6odQy5p5CS5AXgaWEvvAjfoXdi2Cji8qt43rNpGUZJvAd8F1lbVf3Vtv0fveJ5eVe8aZn2jJsmPgbdU1W/3aH85sKmqlg+nstkx3PtIsgL4J+C1wM+65iX0Quovq+q+YdU2apI8VFVv7LPtx1V13IGuaZRNczz7btPUkjwInFFVP92j/feBb4/q8XTMvb/rgIur6u7JjUlOAT4PnDCMokbUU0nOBW6uqt8BJHkZcC7w1FArG00/TfLX9M7cd8D//4f5F8ATwyxsRH0YuD3Jwzx//I4B3gBc2nevFznP3PtI8nC/f8eSbKmqNxzomkZVkmXAp4F30vvPB2AhcAdwWVU9OpzKRlOSw4DL6H0AeDS9IcMd9L7i49NV9eQQyxtJ3cnGyfSGYENv+PAHVbVrqIXNgmfu/X0jydeB63n+3XwpcAHwzaFVNZq2AbcC/wzcR+9HXP4Y2MTzY/Aa3HHA31XVR5O8il7Qn9RtG9kwGqbuP8q7hl3HXPLMfR+SnMXz06N2v5uvq6pbh1rYiEnyBXonEq8EngFeDXwVOI3e3+CqIZY3cpJsAk7ovsNpDfDfwM30jucJVfVnQy1QLwqGu+Zdko1V9dYkC+h9OP26qtqVJMD9VfXWIZc4UpJsrqo3d8v3VdVJk7ZtqKoVw6tOLxbOc+9j0lzizc4lnrWXddPKDgVeRW8GEsAhgPPc998DSS7slu9PMg6Q5Djgt/1300uJ4d7fTfRmcryzqo6oqiN4/gPBLw21stFzDfAgsAH4G+BLSa6md7HIjcMsbER9APiTJD+h9wP0/5HkEeDqbpvksEw/ziWeW0leB1BV27r/fE4HHq+qe4Zb2ehKcijwB/Q+z9jqBXaazHDvI8m3ge8w9Vzid1XV6UMsT5L2yWGZ/t4HHAH8W5InkzwJ3AkcTu/iG0l60fLMfQaSXFhVnx92HZLUj+E+A0ker6pjhl2HJPXjFap9JNnYbxO9S74l6UXLcO/vaOAM9v5iqwD/fuDLkaTBGe79fQ14TVVt2HNDkjsPfDmSNDjH3CWpQU6FlKQGGe6S1CDDXZIaZLhLUoP+D9vgmAcDpaG8AAAAAElFTkSuQmCC" alt="img">

data.groupby(['男1000成绩'])['BMI_score'].count().plot()

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXoAAAEGCAYAAABrQF4qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXjU1dn/8fednez7AgHCEpawY0CWahEEly5otdXan2Krpa12UZ9Hq/Z5uttabbU+bW3rjtWqVUGsGyLgUkEg7IQEwp6EkIQlk32d8/tjZiBAQiaZPXO/rotrMt/MzPc4Tj45Od9z7iPGGJRSSvVfIb5ugFJKKc/SoFdKqX5Og14ppfo5DXqllOrnNOiVUqqfC/PmyVJTU01OTo43T6mUUgFv06ZNx4wxaX19vleDPicnh4KCAm+eUimlAp6IHHLl+Tp0o5RS/ZwGvVJK9XMa9Eop1c9p0CulVD+nQa+UUv2cBr1SSvVzGvRKKdXPadArpTymqq6Z93ZW+LoZQa/HoBeR0SKytdO/WhG5Q0SSRWSliJTYb5O80WClVOB4eUMp331hM/Ut7b5uSlDrMeiNMbuNMZONMZOBC4BGYBlwL7DKGJMLrLLfV0qpU040tAJQXdfi45YEt94O3cwD9hljDgELgSX240uAq9zZMKVU4KttagM06H2tt0F/PfCS/esMY0wFgP02vasniMhiESkQkYLq6uq+t1QpFXAsGvR+wemgF5EI4MvAq705gTHmCWNMvjEmPy2tz8XXlFIBqLbZFvRVdc0+bklw602P/gpgszGm0n6/UkSyAOy3Ve5unFIqsGmP3j/0Jui/zulhG4A3gUX2rxcBy93VKKVU/6BB7x+cCnoRiQbmA0s7HX4QmC8iJfbvPej+5imlApkj6Ks06H3KqY1HjDGNQMpZx45jm4WjlFLnaGnvoLnNCmiP3td0ZaxSyiMcvfkQgep6DXpf0qBXSnmEYw794ORojte30GE1Pm5R8NKgV0p5hKXJVvYgNz0Wq4HjDdqr9xUNeqWURzh69CPSYwEdp/clDXqllEc4xuhHpmnQ+5oGvVLKI04FvfbofU6DXinlEZazhm50Lr3vaNArpTzC0tRGdEQo8VHhxEWGaY/ehzTolVIeYWlqI2FAOABpcZE6l96HNOiVUh5R2ynoU+Miqa7VoPcVDXqllEdYmtqItwd9uvbofUqDXinlEecM3egYvc9o0CulPKL2rKCvb2mnsVU3CfcFDXqllEdYmtqIj7IHfWwkoHPpfUWDXinldm0dVhpaO0716NPjowANel/RoFdKuZ2jzk3CANuWF9qj9y0NeqWU29U228biE6JPj9GDro71FQ16pZTbWU716G1BnxwTQWiIaI/eRzTolVJud3bQh4YIKTERGvQ+4uzm4Iki8pqIFItIkYjMFJFkEVkpIiX22yRPN1YpFRjODnrQMgi+5GyP/jHgPWPMGGASUATcC6wyxuQCq+z3lVLqVNA7pleCLeir6pp91aSg1mPQi0g8cDHwNIAxptUYUwMsBJbYH7YEuMpTjVRKBRbHrJv4Tj36dF0d6zPO9OiHA9XAsyKyRUSeEpEYIMMYUwFgv03v6skislhECkSkoLq62m0NV0r5L0tTG5FhIUSFh546lhYXybH6Vqy6SbjXORP0YcBU4K/GmClAA70YpjHGPGGMyTfG5KelpfWxmUqpQNK5/IFDWmwkHVbDicZWH7UqeDkT9GVAmTFmvf3+a9iCv1JEsgDst1WeaaJSKtBYugh6Z1fHWq2GP68uobymyWPtCzY9Br0x5ihQKiKj7YfmAbuAN4FF9mOLgOUeaaFSKuB0FfSORVM9Bf3e6np+//4envx4v8faF2ycnXXzA+BFEdkOTAZ+AzwIzBeREmC+/b5SSnUd9E6WQSiqqAVg5a5KjNHxfHcIc+ZBxpitQH4X35rn3uYopfoDS1MbozLizjjmbBmEXfagL69povBILeMHJXimkUFEV8Yqpdyuqx59TGQYMRGhPfboiyvqGJQ4ABF4f1elJ5sZNDTolVJu1WE11DW3nzGH3sGZ1bFFFbVcODyZ/KFJrNSgdwsNeqWUW9U7Kld2F/TnWR17vL6FqroW8rLiWZCXSVFFLaUnGj3W1mChQa+Ucquu6tw4pMdFnXeMvvhoHQBjMuOZn5cB6PCNO2jQK6Xc6nxB39Mm4Y4ZN2Oz4shJjWF0RhzvFx71TEODiAa9Usqtegr6uuZ2mts6unzuropa0uMiSbFPxVwwLoONB09wokFX07pCg14p5VanKlcOOHf2dk+Lpooq6hiTFX/q/oK8TKwGVhXp8I0rNOiVUm7VU48eup5L39ZhZW9VHWOzTs+/Hz8onqyEKB2nd5EGvVLKrc4b9OdZHbuvup62DkNepx69iDA/L4NPSqppau16uEf1TINeKeVWtc1thIcKAzqVKHZIdwzddDGX3nEhdkxm/BnHF+Rl0txm5ZMSLXPeVxr0Sim3cqyKFZFzvpcSG0mIQHXtuXPpiyvqiAgNYXhazBnHLxyeTFxUmA7fuECDXinlVpamti5XxYJtk/DkmK5Xx+6qqCU3I5bw0DNjKTw0hHlj0llVVEl7h9Ujbe7vNOiVUm7V1aYjnXU3l76ooo6xWfFdPAMWjMvkZGMbBYdOuq2dwUSDXinlVl0VNOssPS7ynFk31XUtHKtvYUxmXJfPuXhUGhFhIbxfqMM3faFBr5RyK0tTG/FRvevRFx+1XYjN66ZHHxsZxudGpvL+rqNao74PNOiVUm7VU4/etkl4yxmbhJ+acdNN0APMz8ug7GQTRRV17mtskNCgV0q5jTGm5zH62EjaOsyp+fZgm3GTER9JckxEt8+bNzYdEbR0cR9o0Cul3Ka+pR2r6XqxlEN6/LmrY3dV1HZ7IfbU8+KimDokifd3aZGz3tKgV0q5zflWxTqcvTq2td3Kvur6HoMeYEFeBoVHaik7qTXqe8OpoBeRgyKyQ0S2ikiB/ViyiKwUkRL7bZJnm6qU8nenC5qdf4weoLretmjKUfqguxk3nS0Ylwno8E1v9aZHf4kxZrIxxrFJ+L3AKmNMLrDKfl8pFcSc6dGnx0cBp3v0jgux3c246WxYagy56bE6zbKXXBm6WQgssX+9BLjK9eYopQJZ7XlKFDvERIQyIDyUqtrTQR8RFsKw1Jhun9PZgnEZbDh4gpNao95pzga9Ad4XkU0isth+LMMYUwFgv033RAOVUoGjtqn7/WIdROSMTcKLKuoYlRFLWKhzcbQgL5MOq2F1cZXrDQ4Szgb9bGPMVOAK4HYRudjZE4jIYhEpEJGC6mqtPqdUf+bM0A2cuWiq+GgtYzN7HrZxmDAogYz4SB2n7wWngt4Yc8R+WwUsA6YDlSKSBWC/7fLXqzHmCWNMvjEmPy0tzT2tVkr5JUtTG6EhQmxk90M3cLoMQlVdM8fqW52aceMQEmKrUf/RnuputyRUZ+ox6EUkRkTiHF8DC4CdwJvAIvvDFgHLPdVIpVRgsJU/COuyRHFnjh69Y5XrmKyeZ9x0tiAvk6a2Dv5TcqzPbQ0mzvToM4D/iMg2YAPwtjHmPeBBYL6IlADz7feVUkGsp/IHDmmxkVia2theWgM4N+OmsxnDU4iLDNPFU046/99XgDFmPzCpi+PHgXmeaJRSKjA5G/SO1bGflBwjKyGKxOjuSx90JSIshEvGpPNBURUdVkNoyPn/ggh2ujJWKeU259t0pDPHoqnNh086tVCqKwvGZXCioZVNWqO+Rxr0Sim3qW12MuhjbYum2q2mVxdiO/v8qDQiQkN4v1CHb3qiQa+UcpueKlc6OIZugD4HfVxUODNHpLCyqFJr1PdAg14p5RbGGKfH6JNjInBMzOlr0INt+ObQ8Ub2VNb3+TWCgQa9Usotmto6aOswTgV9eGgIydERRIaFkJMS3edzzh+bAaDDNz3QoFdKuYWzq2Id0uIiGZ0Z53Tpg66kx0cxZUgi7+sq2fPqcXqlUko5o7dBf+8VY4gIc72vuSAvk9+9V8yRmiYGJg5w+fX6I+3RK6XcwtJor1x5no3BO5szOp1ZI1JdPu+CcbbhG6190z0NeqWUW9Q291y50hNGpMUyIi1GV8mehwa9Usotejt0407z8zJZv//Eqb8q1Jk06JVSbuHLoF8wLoN2q2HNbq1R3xUNeqWUW1ia2hCBuCjvz/GYnJ1IWlykDt90Q4NeKeUWtU1txEWGEeKDAmOOGvUf7tYa9V3RoFdKuYWlqY2EaO8P2zgsyMugsbWDtfu0Rv3ZNOiVUm5h23TEd0E/c0QKsZFhvF+o0yzPpkGvlHILZwuaeUpkWChzRqfxQVElHVYtctaZBr1Syi2cLWjmSQvGZXKsvpUth7VGfWca9Eopt/CHoJ8zOo3wUNFVsmfRoFdKuYU/BH18VDgzhqewovCo1qjvRINeKeWy5rYOWtqtTu0u5WkLxmVy8Hgje6u0Rr2D00EvIqEiskVE3rLfHyYi60WkREReEZHe7e6rlOo3an24KvZsp2rU6/DNKb3p0f8IKOp0/3fAo8aYXOAkcIs7G6aUChy+LH9wtsyEKCYNTtTNSDpxKuhFJBv4AvCU/b4Ac4HX7A9ZAlzliQYqpfxfbbO9RLEfBD3YFk9tK7NQWdvs66b4BWd79H8E7gGs9vspQI0xpt1+vwwY1NUTRWSxiBSISEF1dbVLjVVK+Sd/6tEDXJRrq3O//sAJH7fEP/QY9CLyRaDKGLOp8+EuHtrlJW5jzBPGmHxjTH5aWlofm6mU8mf+FvR5WfHERISyUYMecG4rwdnAl0XkSiAKiMfWw08UkTB7rz4bOOK5Ziql/JmjDry/BH1YaAhThyax8aAGPTjRozfG3GeMyTbG5ADXA6uNMd8A1gDX2h+2CFjusVYqpfyapck2ihvvgxLF3ZmWk8zuyjrdjATX5tH/GLhLRPZiG7N/2j1NUkoFGktTG7GRYYSF+s/SnPycJIyBTYe1V9+rX7/GmA+BD+1f7wemu79JSqlA4w+rYs82ZXAS4aHChgMnmTsmw9fN8Sn/+fWrlApYtc1tPtlZ6nwGRIQyflCCjtOjQa+UcgN/7NGDbZx+e1lN0O86pUGvlHKZr2vRd2daTjJtHYZtpTW+bopPadArpVzmrz36/KFJAEE/fKNBr5Rymb8GfVJMBKMyYtl4MLg3ItGgV0q5pK3DSmNrh18GPUB+TjKbD50M6u0FNeiVUi45Vf4g2j+DfnpOMnUt7RRV1Pq6KT6jQa+UckmNfeVpfJR/Bv20YckAFATxOL0GvVLKJZsP2ca/R2XE+bglXRuUOICBCVFBPU6vQa+Ucsmq4kqyEqIYm+WfQQ+2Xv2GgycCch9Zd9Tq0aBXSvVZS3sHn5QcY+6YdGz7EfmnaTnJVNe1cOh4o6+b0itVtc1M+uX7Lr+OBr1Sqs/W7z9BY2sH88am+7op5zUtxzZOH2jz6be6aaGXBr1Sqs9WF1cRFR7CrBGpvm7KeeWmx5IwIDzggn5bWQ2hIa7/paRBr5TqE2MMq4ormT0ilajwUF8357xCQoRpOUkBd0F2W6mFMZmuX/vQoFdK9cm+6npKTzQx18+HbRym5SRz4FgD1XUtvm6KU6xWw7ayGiYPTnT5tTTolVJ9sqqoCoC5YwIj6PNzAms+/YHjDdQ1tzNJg14p5SuriqsYmxVPVsIAXzfFKRMGJRAVHsKGAAn6rYdtF2K1R6+U8omaxlY2HTrJvADpzQNEhIUweXAiBQEyTr+trIaYiFBGpMW6/Foa9EqpXvtoTzUdVhMw4/MO03KSKTxiob6l3ddN6dG20homZCd4Z9aNiESJyAYR2SYihSLyC/vxYSKyXkRKROQVEYlwuTVKqYCwuriKlJgIJmW7PqzgTdNykrGa02Ub/FVLewe7KmqZPDjJLa/nTI++BZhrjJkETAYuF5EZwO+AR40xucBJ4Ba3tEgp5dfaO6x8uLuaOaPT3dLb9KapQ5MIEf9fOFVUUUdbh2Hy4AS3vF6PQW9s6u13w+3/DDAXeM1+fAlwlVtapJTya5sP12BpavP71bBdiY0MI29gvN8H/dbDtr843DHjBpwcoxeRUBHZClQBK4F9QI0xxjHQVQYM6ua5i0WkQEQKqqur3dFmpZQPrSquJCxEuCjXv1fDdmdaTjJbDtfQ2m71dVO6ta3MQnpcJJnxUW55PaeC3hjTYYyZDGQD04GxXT2sm+c+YYzJN8bkp6Wl9b2lSim/sLqoiguHJxPnp/XnezI9J5mWdis7yi2+bkq3tpXWMGlwotsKxfVq1o0xpgb4EJgBJIpImP1b2cARt7RIKeW3Sk80UlJVzyWjA2/YxsHfF05ZGtvYf6zBLfPnHZyZdZMmIon2rwcAlwJFwBrgWvvDFgHL3dYqpZRfWl1sWw07b2yGj1vSd2lxkQxLjfHbcfrt5e5bKOXgTI8+C1gjItuBjcBKY8xbwI+Bu0RkL5ACPO22Viml/NKq4iqGp8YwLDXG101xiaPAmdUPNwx3rIidkO2eGTcAYT09wBizHZjSxfH92MbrlVJBoKGlnc/2HeemmUN93RSXTctJ5l8FZeytrve7LRC3ldUwIi3GrXvw6spYpZRT/rP3GK0d1oBbDdsVx0YkGw741/CNMYatpRa3Tat00KBXSjlldVEVcZFhp0IykA1NiSYtLtLvxumPWJo5Vt/CFA16pZS3nWxo5b3Co3x+dBrhoYEfGyLC9JxkNvpZj36bfetA7dErpbzu9+/vpr6lne/PHenrprjNtJwkjliaKa9p8nVTTtlaWkNEaAhjMuPd+roa9Eqp89pZbuGfGw5z44yhbg8gX3LMp/enXv3W0hryBsYTEebeaNagV0p1y2o1/HT5TpKjI7hz/ihfN8etxmbFExcZ5jcbkbR3WNlRZnHr/HkHDXqlVLeWbSln8+EafnzFGBIGBGbJg+6EhghThyb5zQrZvdX1NLV1aNArpbyntrmN375bzOTBiVw7NdvXzfGIaTlJ7Kms52RDq6+b4rELsaBBr5TqxmMflHC8oYVfLhxHSIDVnXeWY6pogR9sRLK1tIb4qDByUqLd/toa9Eqpc+yprOO5tQe5ftpgJgbYLlK9MWlwIhGhIX4xn96xUMpdFSs706BXQe+Tkmp+smwH7R3+W5/cnarrWrh1SQFL1h6krrntnO8bY/j5m4XERoZx92VjfNBC74kKD2VCdoLPg76xtZ09lXUeGZ8HDXoV5JrbOrjnte28uP4wS9Yd8nVzvGJNcRUfFFXyszcLmfGbVfx0+U72VtWd+v47O46ydt9x/nvBKJJj+v9W0NNyktlRZqGptcNnbSg8UkuH1WjQK+UJz687SIWlmdz0WP7w/m6O+NHiGU/ZUW4hNjKMZbfN4rLxmby8oZRLH/mYG578jLe3V/DA27vIy4rnhgsDv3iZM6YPS6LdathS6rtxeseFWE8Nk2nQq6BlaWzjL2v2MWd0Gs/cPA2rMfzszUJfN8vjdh6xkDcwnilDknjka5NZd99c7rl8NAePNXD7PzdzxNLMLxaOC7iNv/vqgiHJiEDBQd8F/ZbSGgYlDiAtLtIjr99jmWKl+qu/frSP2uY27rlsDIOTo7nz0lH89t1iVhQe5bJxmb5unke0d1gpqqjlG5166ymxkdw2ZySLLxrOquIqmlo7+kXhMmclRIczOiPOp+P020prPDZsA9qjV0GqwtLEs58e4OrJg8gbaFvW/63PDWNMZhw/f7OQ+pb2Hl4hMO2rbqC5zcqEQeduahEWGsJl4zK5asogH7TMt6blJLP50EmfXJA/Vt9C2ckmJg1230YjZ9OgV0HpjytLMIYzlvWHh4bwm69M4GhtM4+8v8eHrfMcx4bY4wf1n5o17jBtWDINrR0UVdT1/GA3217m2DowyWPn0KBXQaekso5XN5Vy48yhDE4+c3HK1CFJfOPCITy39gA77aHYn+wstxAdEcqw1FhfN8WvTMuxhawv6t5sLbUQIp795evVoG/3w/0ZVfB5aMVuYiLCuP2Srkvu3n3ZGFJiI7lv6Q46+tlndme5hbys+KC50OqsrIQBZCcN8Ekly62lNYzKiCM6wnOXTHsMehEZLCJrRKRIRApF5Ef248kislJESuy3Pf7dsbeqnqKKWne0W6k+KTh4gpW7KvnunBHdzhFPGBDOz76Ux45yC8+vO+jV9nlSh9VQeKSW8V2MzytsG5EcPIEx3vvlbozx+IVYcK5H3w78lzFmLDADuF1E8oB7gVXGmFxglf3++Rm49q9rWVVU6UKTleobYwwPvltMelwk35ydc97HfmFCFnNGp/H7FbupsPSPufUHjtmqI3Z1IVbZxumPN7Ry4FiD18556HgjlqY2jxQy66zHoDfGVBhjNtu/rgOKgEHAQmCJ/WFLgKt6eq0R6bEMT4vl1ucLeOqT/V79zanUB0VVFBw6yR2Xjurxz2QR4VcLx9NhLwfQH5y+EKtB3xXHOL03p1luO3Uh1vc9+lNEJAeYAqwHMowxFWD7ZQB0uTW8iCwWkQIRKag5cYx/fWcml4/L5NdvF3H/sp20BUl9EeVb7R1WHnqvmOGpMXwt37mSu4OTo/nRvFGsKKxk5a7A/yt0R1ktUeEhjEiL8XVT/NKItFiSYyLYcMB7C6e2ltYwIDyU3HTPXhx3OuhFJBZ4HbjDGOP0QLsx5gljTL4xJj8tLY0BEaH85Yap3H7JCF7acJhFz2zA0nhuYSWl3Gnp5nJKquq5+7LRhPVic+tbLxrG6Iw4frZ8Jw0BPrd+5xELY7Pie/XfH0xEhPyhSRQc8l6PfmtpDRMGJXj8/4lTry4i4dhC/kVjzFL74UoRybJ/PwuocvqkIcLdl43hD1+dxMaDJ7j68U+9Oi6mgktzWwePrNzDpMGJXD6+dyteHXPrj1iaeXRl4M6tt1oNu47U6vh8D6blJHPoeCNVtc0eP1dru5XCI7UeXSjl4MysGwGeBoqMMY90+tabwCL714uA5b09+TUXZPPPb8+gpqmNq/7yKev2He/tSyjVo+fWHuRobTP3XTGmT7W+LxiaxA0XDuGZTwN3bv3B4w3Ut7Tr+HwPpg2zlX7wxnz63UfraG23enShlIMzPfrZwI3AXBHZav93JfAgMF9ESoD59vu9Ni0nmTdum01aXCQ3Pr2ef20s7cvLKNWlmsZWHl+zl0tGpzFjeEqfX+fHl40hOSaS+5cF5tz6UxdiB2rQn8+4gfEMCA/1SoGzrWWOrQP9oEdvjPmPMUaMMRONMZPt/94xxhw3xswzxuTab/v8K3BISjRLb5vFzBEp3PP6dn77TlFA/jAp//PXD/dR19LOPZe7toFGQnQ4P/1SHtvLLLzwWeDVrS88UktEWAi5Gboi9nzCQ0OYMiSRDV5YOLWttIbU2AgGJQ7w+Ln85qpMfFQ4z948jRtnDOXvH+/nuy9sCviLX8q3jtQ08ezag1w9ZRBjs1xfXv6liVlcPCqNh1fs5qjF82O47rSjzMLYzDjC9UJsj6blJFN0tJbaLnbfcqetpTVMyvbM1oFn86v/62GhIfzqqvH84svjWFVUyVf/tq7fLFZR3vfoyj1g4K5OhctcISL8euF42jqs/OLfgTO33hjDziMWHZ930vRhyRgDmzy4YXhtcxv7qus9vlDKwa+C3mHRrByeuXkah080svDPn56q7qaUs/ZU1vH65jJumjmU7KTonp/gpCEp0fxwXi7v7jwaMCu8D59opK65XWfcOGnKkERCQ4QCD16Q3VlmwRjPL5Ry8MugB5gzOp3XvzeLiLAQvvb3dbyzo8LXTVIB5KH3zl+4zBXfvmg4ozJi+enyQhpb/X94UVfE9k50RBjjB8az0YMLpxwXYidme+f/id8GPcDozDjeuH024wYmcNuLm/nz6hItm6B6tPHgCT4oshUuS/LA5tYRYSH85uoJlNc08ccPStz++u62s7yW8FBhVEacr5sSMKblJLO1rIaWds9sGL6ttIZhqTEkRntn83W/DnqA1NhIXrz1Qq6aPJDfv7+Hu/61zWNvvgp8nQuXfWv2MI+dJz8nma9PH8zT/zlA4RH/nlu/s9zC6Mw4IsL8/sfdb0wblkxru5UdZZ75f2u7EOu9v7AC4v98VHgoj143mf+aP4plW8r5xpPrOV7f4utmKT+0clclmw6d5M75oxgQEerRc/348jEkRYdz/7Kdfjsd2BjDjnKLjs/3Uv5Qz21EctTSTGVti9cuxEKABD3YZjz8YF4uf75hCjvKLVz1+KeUVHp/2y/lv9o7rDy0YjfD02L46gXOFS5zRWJ0BP/7xTy2ldbwz/X+Obe+7GQTlqY2HZ/vpZTYSEakxXhkI5Ktpd6pWNlZwAS9wxcnDuSV78ykqdXKVx5fy0d7qn3dJOUnXt9cxt6qeu65bIzXCnd9edJALspN5aH3dlPphfoovbVTV8T22eyRqXy67zh7q+rd+rrbymoIDxW3rO1wVsAFPdh+Ey7//myyk6P55rMb+tUuQKpvmlo7eHRlCVOGJHLZuAyvnddRt76lw8ov/73La+d11s4jFsJChNGZeiG2t74/dyTREaHc89o2tw7NbSutYWxWPFHhnh1a7Cwggx5gUOIAXvvuTOaOSeenywv52fKdtGtt+6DlKFx27+V9K1zmipzUGH44dyRv76hgTbHTRVzdYtOhkyzfWt7tbLQd5bXkZsR5NVT6i/S4KH72pTw2H67hubUH3fKaHVbD9jILk7K9N2wDARz0ADGRYfz9xny+fdEwlqw7xLeWFHh82bLyPzWNrTz+4V7mjUnnQhcKl7li8cUjGJkey/+8sdNrc+v3Vdez6JkN/OjlrfzkjXM38THGUFhuYcIg7w0R9DdXTR7EvDHpPLyimINuKKW+v7qe+pZ2r16IhQAPeoDQEOEnX8jjwa9MYO3eY1zz+FpKTzT6ulnKix7/cB/1bihc5orOc+sfW+X5ufX1Le185x+biAgL4eZZOfxz/WFufvbMTXwqLM0cb2jVGTcuEBEeuHoC4aEh/Pj17VhdHMLxxYVY6AdB73D99CE8f8t0qupaWPiXTz26fFn5j/KaJp5be5Brpmb7fBx6+rBkrssfzFOfHKCowulN2HrNGMPdr25jf3U9f75hCj//8jh+/9VJbNuUneIAABUbSURBVDhwgqv/+umpnqdjRew4DXqXZCZE8b9fyGP9gRO86OLsqm1lNcRFhjE81bvbOfaboAeYNSKVZbfNImFAODc8uZ5lW8p83STlYY5dn+50U+EyV9135RgSB4Rz39IdLvf+uvO3j/bz7s6j3HfFWGaNSAXg2guyeeGWCznZ0MpVj3/KZ/uPU1huITREyPPi7I7+6qv52VyUm8pv3y12acRgW6mFiYMTCAnx7nWkfhX0AMPTYll22ywuGJrEna9s4/crdnvsB075VvHRWl7fXMbNs3K8UtPbGYnREfzPF8eytbSGFzccdvvrf1JSzcMrivnixCxuvejMlb8XDk/hjdtnkxITwY1Pr+f1zeWMTIvVC7FuICL89isTEOC+pTv6VIqlua2Doopar1+IhX4Y9GD7YVvyrelclz+YP6/Zy/df2kxTq5ZN6G8efm83sZFh3DZnhK+bcoarJg9i9sgUHnqv2K17j5aeaOQHL20hNz2Oh66d2OXsoqEpMSy9bTYXDkuhvKZJF0q5UXZSNPdeOZb/7D3GK33YCa/wSC3tVuP1C7HQT4MebBfHHrxmAj+5cizv7jzKdU+s88qGv8o71u8/zqriKm6bM9JrhaGcdWpufbuVX77lnrn1zW0dfPeFTXRYDX+/8QKiI8K6fWzCgHCe/eY0fvalPL43Z7hbzq9svjF9CDOGJ/PA20W93itjm/1C7BQNevcSEb598XCeuDGfvVX1LPzLp35fgEr1zBjDg+8VkxkfxTdn5/i6OV0anhbL9y8ZyVvbK1iz27W59cYY7l+2g8IjtTx2/WRynLiQFx4awjdnD2Nkui6UcqeQEOF310yk3Wq4v5dDONvKashKiCI9PsqDLexaj0EvIs+ISJWI7Ox0LFlEVopIif3W89uYu2B+XgavfncmAF/92zpW7gqMDSNU11YUVrLlcA13zs/16/Hn73x+OCPSYvjfN3a6NHS4ovAoSzeXc8elucwd471Vv6prQ1NiuPuy0azZXc3SzeVOP2+bfetAX3CmR/8ccPlZx+4FVhljcoFV9vt+bdzABJbfPpvc9FgW/6OAJz7ep7XtA5CtcFkxI9JiuGaq5wuXuSIyLJQHrp5A2ckm/m913+fW/+OzQwxKHMAP5ua6sXXKFTfPyiF/aBK/+HehU0PCJxtaOXi80Sfj8+BE0BtjPgbOnpS+EFhi/3oJcJWb2+UR6fFRvLx4JleOz+I37xRz7+s7aG3XsgmB5NVNZeyvbuCey71XuMwVM4an8NULsnny4/0UH+393PpDxxv4dO9xrps2mFAvT8lT3QsJEX537URa2q38zxs7e+w0brPvKDVpsG8ujvf1JyXDGFMBYL9Nd1+TPGtARCh/+voUfjB3JK8UlHLTM+upaWz1dbOUE2yFy/YwdUgiC/ICZwjj/ivHEj8gnPv7MLf+lY2lhAh8LX+wh1qn+mpEWix3zR/F+7sq+ff28291uq3UgghM9OOhG5eIyGIRKRCRgupq/ygpHBIi/NeC0Tx63SQ2H6rh6sfXsr/avaVIlfs98+kBqupauPeKsV4vXOaKpJgIfnLlWDYfruGljc7PrW/rsPLqpjLmjkknM8H7F/BUz269aDiTBify8zcLz7sZ0rayGnLTY4mN7H62lCf1NegrRSQLwH7b7bQCY8wTxph8Y0x+WlpaH0/nGVdPyeaf376Q2qY2rn58LWv3HvN1k1Q3Tja08rcP93Hp2HSmD0v2dXN67StTBzFzeAq/e7eYqjrnpvmuKqqiuq6F66cN8XDrVF+FhggPXzuR+uZ2fvpmYZePMcb49EIs9D3o3wQW2b9eBCx3T3O8Lz8nmTdun016XCQ3PbOBlz2wmlG57vEP99LQ2s7dl/mucJkrRIRfXz2e5jYrv36ryKnnvLzxMBnxkcwZ7V8dJHWmURlx/HDeSN7eXsF7O88dwik72cTxhlafXYgF56ZXvgSsA0aLSJmI3AI8CMwXkRJgvv1+wBqcHM3rt81i9shU7l26gwfe3uW3e4AGo7KTjSxZe8gvCpe5YkRaLLddMoI3tx3pcWe08pomPtpTzdfyBwfERedg953Pj2DcwHj+541CTjacec3PVxUrO3Nm1s3XjTFZxphwY0y2MeZpY8xxY8w8Y0yu/TbgS0XGR4Xz9KJ8bp6Vw5OfHGDx8wXUt3inrrg6v0dXloD4T+EyV3xvzgiGp9rm1je3dT+3/l/2JfZ6ETYwhIeG8NC1E6lpbD1nNfS20hoiw0J82knRrkInYaEh/PzL4/jVwnF8uKeaa/+6lvKa3i1zVu5VfLSWpVvK+OasHAb6SeEyV0SGhfLrq8dz+EQjf+pmbn2H1fBqQSkX5aYxODnayy1UfTVuYAK3zRnBsi3lrCo6vShzW1kN4wclEO7Dv8w06Ltw48wcnrl5GuUnm1j450/Zcvikr5sUtB56bzdxkWF8z88Kl7li1ohUrpmazd8/2s+eyrpzvv/xnmqOWJr5+jTtzQea78/NZXRGHPcv24GlqY32Dis7yr2/deDZNOi78flRaSy9bRYDIkK4/onPeGv7EV83yW3qmtv48+oSvvfCJt7bWeG3e+1+tv84q4uruO0S/ytc5qqffGEscVFhXc6t/+eGw6TGRjBvbOCsFVA2EWEhPPzViVTXtfDA27vYXVlHc5vVZwulHHwzqTNA5GbE8cZts/nuC5v4/j+3sL+6gR/MHRlQc7g7a2hp57m1B3nyk/3UNLaRHBPBuzuPkpUQxf+bMZTrpg0mNTbS180E7IXL3rUVLrt5Vo6vm+N2yTER3H/lWO5+bTuvFJTy9em2KZRVtc2sLq7i1ouGERGm/bBANDE7kcUXj+BvH+07dZ3PlxdiQXv0PUqJjeSFWy/kK1MH8cjKPdzxytbzXkTzR42t7fzto31c9NAaHl6xmymDE1l++2w2/uRSnrjxAkakxfLwit3M+u1q7npl66lZAr60ovAoW0truGv+KL8uXOaKay/I5sJhyfz2nSKq62yLbV7dVEaH1ejc+QB3x6W5DE+L4Z0dR0mKDmeIj6+1aI/eCZFhofzhq5NOBWLpiUaeuCnfb3q/3Wlq7eCFzw7x94/3cay+lYtHpXHnpblMGXK62OiCcZksGJfJ3qo6/rHuEK9tKmPplnImZidw08wcvjgxy+tB295h5aH3dpObHstXpg7y6rm9ybHx9BWPfcwDb+/ika9N5uWNh5k5PIVhXt5TVLlXVHgoD187kWv/to6J2Yk+HwUQb1ZwzM/PNwUFBV47nye8s6OCu/61lZSYSJ65eZpfzutubuvgxfWH+euH+zhW38LnRqZy5/xcLhja84rSuuY2lm0pZ8nag+yrbiA5JoLrpg3mGxcOITvJO72Sf64/zP3LdvDkTfnMD6CaNn31yMo9/N+qEr77eduf+49dP5mFk/vvL7hg8s6OCoYkR7u805eIbDLG5Pf5+Rr0vbe9rIZblxTQ2NrBn26YwiWj/aOmW3NbB69sLOUva/ZSVdfCzOEp3Dl/VJ9KBhhjWLvvOEvWHuQD+1SxS8dmsGhWDrNGpHish9LY2s6chz9kSHI0r353ps97Qt7Q3NbBFY99woFjDSRGh/PZffP67XCV6htXg16HbvpgYnYiy78/m1ueK+CW5zbyv1/M4+ZZOT4LpZb2Dv5VUMbja/ZSYWlm+rBkHrt+CjNHpPT5NUWE2SNTmT0ylfKaJl787BAvbyzl/V2VjEyP5aaZQ/nK1Gy3F2l69tODVNW18Pg3pgZFyIPtz/wHrhrPDU+t55qp2Rryyu20R++ChpZ27nhlKyt3VfL/ZgzhZ18a59VFEa3tVl7bVMZf1uylvKaJC4Ymcdf8UR7rcTe3dfD29gqWrDvI9jILsZFhXDN1EDfOzGFkeqzLr3+ioZXPP7SGGSNSePKmPndeAtaGAyfIGxjvswqHyn/p0I2PWa2G360o5u8f7eei3FT+fMNUEgaEe/ScbR1Wlm4u40+r91J2sonJgxO5a/4oLspN9VoveGtpDc+vPchb2yto7bDyuZGp3DRzKPPGZvR5g4xfvbWLZz89wIo7LiY3w/+ufSjlKxr0fuJfG0u5f9kOhqZE88zN0xia4v5ZE+0dVpZtKedPq/dy+EQjE7MTuHP+KOaMSvPZMMex+hZe2VjKC58dosLSzKDEAafm5CfHOL/IqfREI/P+8BFXTxnE766d6MEWKxV4NOj9yLp9x/nei5sQ4O835rutbnqH1bB8azn/t6qEg8cbGTcwnrvmj2LumHS/Gcdu77DyQVElS9YeYt3+40SEhfDlSQNZNDOHCdk9zzi465WtvL2jgg/vnkNWQuDXtFHKnTTo/cyBYw3c8txGSk828tuvTOTaC/q+gXWH1fDW9iM8tqqE/dUNjM2K585Lc5mfl+E3Ad+VPZV1PL/uIEs3l9PY2sGUIYksmpnDFRMyiQw790LjriO1fOFPn/Cdi0dw7xWBWW9eKU/SoPdDlsY2vvfiJtbuO85tc0bw3wtGE9KLcWur1fDOzgr++EEJe6vqGZ0Rx53zc1mQl9mr1/G12uY2Xt9UxvPrDnHgWAOpsRF8ffoQbrhwyBm99puf3cCWwzV8fPclJER79vqGUoFIg95PtXVY+enyQl7acJjLx2XyyHWTiI44/2wKq9WwovAof/yghN2VdeSmx3LHpaO4YnxgBfzZrFbDf/Ye4/l1B1lVXEWICAvyMrhpZg4Gww1Pruf+K8ew+OL+U6FSKXfSoPdjxhie/s8BHniniPEDE3hqUT4Z8edu8myM4f1dlTy6cg/FR+sYnhbDHZeO4gsTsvo8g8VflZ5o5AX7nHxLUxvhoUJabCSr/3uOzh9Xqhsa9AFgVVElP3xpC3FR4Ty1KP/UcmhjDKuKqnj0gz0UHqllWGoMP5qXy5cmDex3AX+2ptYO/r3tCEu3lPGt2cNYMC7T101Sym9p0AeIoopabl1SwImGVh69bjKRYSE8+sEetpdZGJIczQ/n5XLV5IG6P6hS6hwa9AGkqq6Zxc9vOlUGODtpAD+cm8vVUwf5dJsxpZR/82mtGxG5HHgMCAWeMsY86Mrr9XfpcVG8vHgGf/yghKEp0VwzNVs3l1BKeVyfg15EQoG/APOBMmCjiLxpjNl1/mcGt6jwUJ0rrpTyKle6k9OBvcaY/caYVuBlYKF7mqWUUspdXAn6QUBpp/tl9mNnEJHFIlIgIgXV1dUunE4ppVRfuBL0Xc3/O+fKrjHmCWNMvjEmPy0tzYXTKaWU6gtXgr4MGNzpfjZwxLXmKKWUcjdXgn4jkCsiw0QkArgeeNM9zVJKKeUufZ51Y4xpF5HvAyuwTa98xhhT6LaWKaWUcguX5tEbY94B3nFTW5RSSnmArtZRSql+zqslEESkDtjttRP6t1TgmK8b4Sf0vThN34vT9L04bbQxps8bKXt7u/ndrtRr6E9EpEDfCxt9L07T9+I0fS9OExGXioTp0I1SSvVzGvRKKdXPeTvon/Dy+fyZvhen6Xtxmr4Xp+l7cZpL74VXL8YqpZTyPh26UUqpfk6DXiml+jmvBL2IXC4iu0Vkr4jc641z+gsRGSwia0SkSEQKReRH9uPJIrJSRErst0m+bqu3iEioiGwRkbfs94eJyHr7e/GKvXZSvyciiSLymogU2z8fM4P1cyEid9p/PnaKyEsiEhUsnwsReUZEqkRkZ6djXX4OxOb/7Fm6XUSmOnMOjwd9p52orgDygK+LSJ6nz+tH2oH/MsaMBWYAt9v/++8FVhljcoFV9vvB4kdAUaf7vwMetb8XJ4FbfNIq73sMeM8YMwaYhO09CbrPhYgMAn4I5BtjxmOrnXU9wfO5eA64/Kxj3X0OrgBy7f8WA3915gTe6NEH9U5UxpgKY8xm+9d12H6YB2F7D5bYH7YEuMo3LfQuEckGvgA8Zb8vwFzgNftDguK9EJF44GLgaQBjTKsxpoYg/VxgW7w5QETCgGiggiD5XBhjPgZOnHW4u8/BQuB5Y/MZkCgiWT2dwxtB79ROVMFARHKAKcB6IMMYUwG2XwZAuu9a5lV/BO4BrPb7KUCNMabdfj9YPh/DgWrgWfsw1lMiEkMQfi6MMeXA74HD2ALeAmwiOD8XDt19DvqUp94Ieqd2ourvRCQWeB24wxhT6+v2+IKIfBGoMsZs6ny4i4cGw+cjDJgK/NUYMwVoIAiGabpiH39eCAwDBgIx2IYozhYMn4ue9OnnxRtBH/Q7UYlIOLaQf9EYs9R+uNLxJ5f9tspX7fOi2cCXReQgtiG8udh6+In2P9kheD4fZUCZMWa9/f5r2II/GD8XlwIHjDHVxpg2YCkwi+D8XDh09znoU556I+iDeicq+xj000CRMeaRTt96E1hk/3oRsNzbbfM2Y8x9xphsY0wOts/BamPMN4A1wLX2hwXLe3EUKBWR0fZD84BdBOHnAtuQzQwRibb/vDjei6D7XHTS3efgTeAm++ybGYDFMcRzXsYYj/8DrgT2APuAn3jjnP7yD/gctj+ttgNb7f+uxDY2vQoosd8m+7qtXn5f5gBv2b8eDmwA9gKvApG+bp+X3oPJQIH9s/EGkBSsnwvgF0AxsBP4BxAZLJ8L4CVs1ybasPXYb+nuc4Bt6OYv9izdgW2mUo/n0BIISinVz+nKWKWU6uc06JVSqp/ToFdKqX5Og14ppfo5DXqllOrnNOhVv9FVFUD78V5XAhSRRfbHl4jIorPPpVQg0emVKuCIyM+xVQJ11EEJAz4DVgP12Io+je/0+IeAE8aYB+1lspOMMT8WkSuBH2Bb13Ah8Jgx5kIRScY2vz0f2xqITcAF2JbpfwvoXMKiAvi0q+PGmG+79T9cqT4K6/khSvml642t2iMikoithtDH9sJxZ1uIbYEW2CoBfgj8mE6VAIHP7PXhs+yPXWmMOWF//ZWcLiP7Q2PMVscLi8gfeziulM/p0I0KBr2tBKgVV1W/okGvgll3lQCDtaKm6qc06FUw6G0lwKCvuKr6Fw16FQx6WwlwBbBARJLsM3QW2I8pFZA06FW/ISIvAeuA0SJSJiKOPUYfBOaLSAkw334f4B1gP7bqiE8CtwHYL8L+CluJ7Y3ALx0XZpUKRDrrRvUbxpivd3P8OLYa52cfN8Dt3TznGeAZtzZQKR/RoFeBqAp4XkQc+86GAO954bwngd+ISGunY9vPc1wpv6ALppRSqp/TMXqllOrnNOiVUqqf06BXSql+ToNeKaX6OQ16pZTq5/4/Vi+rGR9JpO0AAAAASUVORK5CYII=" alt="img">

手机扫一扫

移动阅读更方便

阿里云服务器
腾讯云服务器
七牛云服务器